A376678
Position of first zero in the n-th differences of the primes, or 0 if it does not appear.
Original entry on oeis.org
0, 0, 2, 7, 69, 13, 47, 58, 9, 43, 3553, 100, 7019, 14082, 68097, 14526, 149677, 2697, 481054, 979719, 631894, 29811, 25340978, 50574254, 7510843, 210829337, 67248861, 224076286, 910615647, 931510269, 452499644, 2880203722, 396680865, 57954439970, 77572822440, 35394938648
Offset: 0
The third differences of the primes begin:
-1, 2, -4, 4, -4, 4, 0, -6, 8, ...
so a(3) = 7.
This is the position at which 0 first appears in row n of
A095195.
For composite instead of prime we have
A377037.
For squarefree instead of prime we have
A377042, nonsquarefree
A377050.
For prime-power instead of prime we have
A377055.
Cf.
A000720,
A007442,
A030016,
A065890,
A084758,
A140119,
A258025,
A258026,
A333254,
A349643,
A376681,
A376682,
A376683.
-
nn=100000;
u=Table[Differences[Select[Range[nn],PrimeQ],k],{k,2,16}];
mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]
A376684
Antidiagonal-sums of the absolute value of the array A376682(n,k) = n-th term of the k-th differences of the noncomposite numbers (A008578).
Original entry on oeis.org
1, 3, 4, 9, 12, 27, 50, 109, 224, 471, 942, 1773, 3118, 4957, 7038, 9373, 16256, 55461, 150622, 346763, 718972, 1377101, 2462220, 4114987, 6387718, 9112455, 12051830, 17160117, 40946860, 134463917, 349105370, 800713921, 1684145408, 3297536923, 6040907554
Offset: 0
The fourth antidiagonal of A376682 is: (7, 2, 0, -1, -2), so a(4) = 12.
These are the antidiagonal-sums of the absolute value of
A376682 (modern
A095195).
This is the absolute version of
A376683.
Cf.
A002808,
A064113,
A065890,
A173390,
A233671,
A258025,
A333214,
A333254,
A376680,
A377033,
A377037.
-
nn=12;
t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!PrimeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}];
Total/@Table[Abs[t[[j,i-j+1]]],{i,nn},{j,i}]
A376855
Position of first 0 in the n-th differences of the noncomposite numbers (A008578), or 0 if it does not appear.
Original entry on oeis.org
0, 0, 1, 8, 70, 14, 48, 59, 10, 44, 3554, 101, 7020, 14083, 68098, 14527, 149678, 2698, 481055, 979720, 631895, 29812, 25340979, 50574255, 7510844, 210829338, 67248862, 224076287, 910615648, 931510270, 452499645, 2880203723, 396680866, 57954439971, 77572822441, 35394938649
Offset: 0
The third differences of the noncomposite numbers begin: 1, -1, 2, -4, 4, -4, 4, 0, -6, 8, ... so a(3) = 8.
For firsts instead of positions of zeros we have
A030016, modern
A007442.
For row-sums instead of zero-positions we have
A376683, modern
A140119.
For composite instead of noncomposite we have
A377037.
For squarefree instead of noncomposite we have
A377042, nonsquarefree
A377050.
For prime-power instead of noncomposite we have
A377055.
-
nn=10000;
u=Table[Differences[Select[Range[nn],#==1||PrimeQ[#]&],k],{k,2,16}];
mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]
A333212
Lengths of maximal weakly decreasing subsequences in the sequence of prime gaps (A001223).
Original entry on oeis.org
1, 2, 2, 2, 1, 2, 3, 1, 3, 3, 2, 1, 3, 2, 1, 2, 2, 2, 3, 3, 2, 2, 4, 1, 2, 5, 3, 1, 3, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 1, 2, 2, 4, 1, 4, 4, 3, 1, 3, 2, 1, 1, 2, 5, 3, 2, 2, 2, 2, 2, 1, 3, 1, 3, 1, 2, 1, 3, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 3
Offset: 1
The prime gaps split into the following weakly decreasing subsequences: (1), (2,2), (4,2), (4,2), (4), (6,2), (6,4,2), (4), (6,6,2), (6,4,2), (6,4), (6), ...
First differences of
A258025 (with zero prepended).
The version for the Kolakoski sequence is
A332273.
The weakly increasing version is
A333215.
The strictly decreasing version is
A333252.
The strictly increasing version is
A333253.
Positions of adjacent equal differences are
A064113.
Weakly decreasing runs of compositions in standard order are
A124765.
Positions of strict ascents in the sequence of prime gaps are
A258025.
Cf.
A000040,
A000720,
A001221,
A036263,
A054819,
A084758,
A114994,
A124760,
A124761,
A124768,
A333213,
A333214.
A333253
Lengths of maximal strictly increasing subsequences in the sequence of prime gaps (A001223).
Original entry on oeis.org
2, 2, 2, 3, 2, 1, 3, 1, 2, 1, 2, 3, 1, 2, 3, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 1, 3, 3, 2, 2, 3, 1, 3, 1, 2, 3, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 3, 1, 2, 4, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 1, 3, 1, 3, 3, 1, 2, 2, 2
Offset: 1
The prime gaps split into the following strictly increasing subsequences: (1,2), (2,4), (2,4), (2,4,6), (2,6), (4), (2,4,6), (6), (2,6), (4), (2,6), (4,6,8), (4), (2,4), (2,4,14), ...
The weakly decreasing version is
A333212.
The weakly increasing version is
A333215.
First differences of
A333231 (if its first term is 0).
The strictly decreasing version is
A333252.
Strictly increasing runs of compositions in standard order are
A124768.
Positions of strict ascents in the sequence of prime gaps are
A258025.
A373820
Run-lengths (differing by 0) of antirun-lengths (differing by > 2) of odd primes.
Original entry on oeis.org
2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1
Offset: 1
The antiruns of odd primes (differing by > 2) begin:
3
5
7 11
13 17
19 23 29
31 37 41
43 47 53 59
61 67 71
73 79 83 89 97 101
103 107
109 113 127 131 137
139 149
151 157 163 167 173 179
181 191
193 197
199 211 223 227
229 233 239
241 251 257 263 269
271 277 281
with lengths:
1, 1, 2, 2, 3, 3, 4, 3, 6, 2, 5, 2, 6, 2, 2, ...
with runs:
1 1
2 2
3 3
4
3
6
2
5
2
6
2 2
4
3
5
3
4
with lengths a(n).
A001223 gives differences of consecutive primes, run-lengths
A333254, run-lengths of run-lengths
A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A376592
Points of nonzero curvature in the sequence of squarefree numbers (A005117).
Original entry on oeis.org
2, 3, 5, 6, 7, 8, 10, 13, 15, 17, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31, 34, 36, 37, 38, 39, 41, 42, 44, 45, 46, 47, 49, 50, 51, 52, 54, 57, 59, 60, 61, 63, 64, 66, 67, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95
Offset: 1
The squarefree numbers (A005117) are:
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, ...
with first differences (A076259):
1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ...
with first differences (A376590):
0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, ...
with nonzeros at (A376591):
2, 3, 5, 6, 7, 8, 10, 13, 15, 17, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31, 34, 36, ...
A073576 counts integer partitions into squarefree numbers, factorizations
A050320.
For squarefree numbers:
A076259 (first differences),
A376590 (second differences),
A376591 (inflection and undulation points).
Cf.
A007674,
A036263,
A053797,
A053806,
A061398,
A072284,
A112925,
A112926,
A120992,
A333254,
A373198,
A376655.
A376680
Run-lengths of first differences of composite numbers.
Original entry on oeis.org
2, 2, 2, 2, 2, 2, 1, 4, 2, 4, 1, 2, 2, 2, 1, 4, 1, 4, 2, 4, 1, 2, 2, 4, 1, 2, 1, 4, 1, 6, 1, 2, 2, 2, 2, 2, 1, 12, 1, 2, 1, 4, 2, 8, 2, 4, 1, 4, 1, 2, 1, 4, 1, 4, 2, 8, 2, 2, 2, 10, 1, 10, 1, 2, 2, 2, 1, 4, 2, 8, 1, 4, 1, 4, 1, 4, 2, 4, 1, 2, 2, 8, 1, 12, 1, 2
Offset: 1
The composite numbers (A002808) are:
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, ...
with runs:
(2,2), (1,1), (2,2), (1,1), (2,2), (1,1), (2), (1,1,1,1), (2,2), (1,1,1,1), ...
with lengths (A376680):
2, 2, 2, 2, 2, 2, 1, 4, 2, 4, 1, 2, 2, 2, 1, 4, 1, 4, 2, 4, 1, 2, 2, 4, 1, 2, ...
For prime instead of composite we have
A333254, first appearances
A335406.
These are the first differences of
A376603.
A064113 lists positions of adjacent equal prime gaps.
A377035
Antidiagonal-sums of the absolute value of the array A377033(n,k) = n-th term of the k-th differences of the composite numbers (A002808).
Original entry on oeis.org
4, 8, 10, 12, 14, 18, 21, 28, 34, 40, 47, 74, 96, 110, 138, 286, 715, 2393, 8200, 25731, 72468, 184716, 431575, 934511, 1892267, 3605315, 6494464, 11116110, 18134549, 28348908, 42701927, 62290660, 88313069, 120999433, 159769475, 221775851, 483797879
Offset: 1
The fourth antidiagonal of A377033 is (9, 1, -1, -1), so a(4) = 12.
The version for prime instead of composite is
A376681, absolute version of
A140119.
This is the antidiagonal-sums of absolute value of the array
A377033.
For squarefree instead of composite we have
A377040, absolute version of
A377039.
For nonsquarefree instead of composite we have
A377048, absolute version of
A377047.
For prime-power instead of composite we have
A377053, absolute version of
A377052.
-
q=Select[Range[120],CompositeQ];
t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,Length[q]/2},{i,Length[q]/2}];
Total/@Table[Abs[t[[j,i-j+1]]],{i,Length[q]/2},{j,i}]
A373822
Sum of the n-th maximal run of first differences of odd primes.
Original entry on oeis.org
4, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 12, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2, 10, 2, 12, 4, 12, 2, 10, 2, 4, 2, 24, 4, 2, 4, 6, 2, 10, 18, 2, 6, 4, 2, 10, 14, 4, 2, 4, 14, 6, 10, 2, 4, 6, 8, 12, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6, 4, 6, 8, 4, 2, 4
Offset: 1
The odd primes are
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with first differences
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, ...
with runs
(2,2), (4), (2), (4), (2), (4), (6), (2), (6), (4), (2), (4), (6,6), ...
with sums a(n).
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths of odd primes.
Comments