cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A242771 Number of integer points in a certain quadrilateral scaled by a factor of n (another version).

Original entry on oeis.org

0, 0, 1, 3, 6, 9, 14, 19, 25, 32, 40, 48, 58, 68, 79, 91, 104, 117, 132, 147, 163, 180, 198, 216, 236, 256, 277, 299, 322, 345, 370, 395, 421, 448, 476, 504, 534, 564, 595, 627, 660, 693, 728, 763, 799, 836, 874, 912, 952, 992, 1033, 1075, 1118, 1161, 1206
Offset: 1

Views

Author

Michael Somos, May 22 2014

Keywords

Comments

The quadrilateral is given by four vertices [(1/2, 1/3), (0, 1), (0, 0), (1, 0)] as an example on page 22 of Ehrhart 1967. Here the open line segment from (1/2, 1/3) to (0, 1) is included but the rest of the boundary is not. The sequence is denoted by d'(n).
From Gus Wiseman, Oct 18 2020: (Start)
Also the number of ordered triples of positive integers summing to n that are not strictly increasing. For example, the a(3) = 1 through a(7) = 14 triples are:
(1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5)
(1,2,1) (1,2,2) (1,3,2) (1,3,3)
(2,1,1) (1,3,1) (1,4,1) (1,4,2)
(2,1,2) (2,1,3) (1,5,1)
(2,2,1) (2,2,2) (2,1,4)
(3,1,1) (2,3,1) (2,2,3)
(3,1,2) (2,3,2)
(3,2,1) (2,4,1)
(4,1,1) (3,1,3)
(3,2,2)
(3,3,1)
(4,1,2)
(4,2,1)
(5,1,1)
A001399(n-6) counts the complement (unordered strict triples).
A014311 \ A333255 ranks these compositions.
A140106 is the unordered version.
A337484 is the case not strictly decreasing either.
A337698 counts these compositions of any length, with complement A000009.
A001399(n-6) counts unordered strict triples.
A001523 counts unimodal compositions, with complement A115981.
A007318 and A097805 count compositions by length.
A069905 counts unordered triples.
A218004 counts strictly increasing or weakly decreasing compositions.
A337483 counts triples either weakly increasing or weakly decreasing.
(End)

Examples

			G.f. = x^3 + 3*x^4 + 6*x^5 + 9*x^6 + 14*x^7 + 19*x^8 + 25*x^9 + 32*x^10 + ...
		

Crossrefs

Programs

  • Magma
    [Floor((5*n-7)*(n-1)/12): n in [1..60]]; // Vincenzo Librandi, Jun 27 2015
  • Mathematica
    a[ n_] := Quotient[ 7 - 12 n + 5 n^2, 12];
    a[ n_] := With[ {o = Boole[ 0 < n], c = Boole[ 0 >= n], m = Abs@n}, Length @ FindInstance[ 0 < c + x && 0 < c + y && (2 x < c + m && 4 x + 3 y < o + 3 m || m < o + 2 x && 2 x + 3 y < c + 2 m), {x, y}, Integers, 10^9]];
    LinearRecurrence[{1,1,0,-1,-1,1},{0,0,1,3,6,9},90] (* Harvey P. Dale, May 28 2015 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],!Less@@#&]],{n,0,15}] (* Gus Wiseman, Oct 18 2020 *)
  • PARI
    {a(n) = (7 - 12*n + 5*n^2) \ 12};
    
  • PARI
    {a(n) = if( n<0, polcoeff( x * (2 + x^2 + x^3 + x^4) / ((1 - x)^2 * (1 - x^6)) + x * O(x^-n), -n), polcoeff( x^3 * (1 + x + x^2 + 2*x^4) / ((1 - x)^2 * (1 - x^6)) + x * O(x^n), n))};
    

Formula

G.f.: x^3 * (1 + 2*x + 2*x^2) / (1 - x - x^2 + x^4 + x^5 - x^6) = (x^3 + x^4 + x^5 + 2*x^7) / ((1 - x)^2 * (1 - x^6)).
a(n) = floor( A147874(n) / 12).
a(-n) = A002789(n).
a(n+1) - a(n) = A010761(n).
For n >= 6, a(n) = A000217(n-2) - A001399(n-6). - Gus Wiseman, Oct 18 2020

A337698 Number of compositions of n that are not strictly increasing.

Original entry on oeis.org

0, 0, 1, 2, 6, 13, 28, 59, 122, 248, 502, 1012, 2033, 4078, 8170, 16357, 32736, 65498, 131026, 262090, 524224, 1048500, 2097063, 4194200, 8388486, 16777074, 33554267, 67108672, 134217506, 268435200, 536870616, 1073741484, 2147483258, 4294966848, 8589934080
Offset: 0

Views

Author

Gus Wiseman, Oct 06 2020

Keywords

Examples

			The a(2) = 1 through a(5) = 13 compositions:
  (11)  (21)   (22)    (32)
        (111)  (31)    (41)
               (112)   (113)
               (121)   (122)
               (211)   (131)
               (1111)  (212)
                       (221)
                       (311)
                       (1112)
                       (1121)
                       (1211)
                       (2111)
                       (11111)
		

Crossrefs

A000009 counts the complement.
A047967 is the unordered version.
A056823 is the weak version.
A140106 counts the unordered case of length 3.
A242771 counts the case of length 3.
A333255 is the complement of a ranking sequence (using standard compositions A066099) for these compositions.
A337481 counts these compositions that are not strictly decreasing.
A337482 counts these compositions that are not weakly decreasing.
A001523 counts unimodal compositions, with complement A115981.
A007318 and A097805 count compositions by length.
A218004 counts strictly increasing or weakly decreasing compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!Less@@#&]],{n,0,15}]

Formula

a(n) = 2^(n-1) - A000009(n) for n > 0.
Previous Showing 11-12 of 12 results.