cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A338903 Number of integer partitions of the n-th squarefree semiprime into squarefree semiprimes.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 5, 4, 6, 5, 12, 14, 19, 22, 27, 36, 38, 51, 77, 86, 128, 141, 163, 163, 207, 233, 259, 260, 514, 657, 813, 983, 1010, 1215, 1255, 1720, 2112, 2256, 3171, 3370, 3499, 3864, 4103, 6292, 7313, 7620, 8374, 10650, 17579, 18462, 23034, 25180
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2020

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct prime numbers.

Examples

			The a(n) partitions for n = 1, 5, 7, 9, 10, 11, 13:
  6  21    26       34          35        38           46
     15,6  14,6,6   22,6,6      21,14     26,6,6       34,6,6
           10,10,6  14,14,6     15,14,6   22,10,6      26,14,6
                    14,10,10    15,10,10  14,14,10     21,15,10
                    10,6,6,6,6            14,6,6,6,6   22,14,10
                                          10,10,6,6,6  26,10,10
                                                       15,15,10,6
                                                       22,6,6,6,6
                                                       14,14,6,6,6
                                                       14,10,10,6,6
                                                       10,10,10,10,6
                                                       10,6,6,6,6,6,6
		

Crossrefs

A002100 counts partitions into squarefree semiprimes.
A056768 uses primes instead of squarefree semiprimes.
A101048 counts partitions into semiprimes.
A338902 is the not necessarily squarefree version.
A339113 includes the Heinz numbers of these partitions.
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A006881 lists squarefree semiprimes, with odd and even terms A046388 and A100484.
A320656 counts factorizations into squarefree semiprimes.
A338898/A338912/A338913 give prime indices of semiprimes, with sum/difference/product A176504/A176506/A087794.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes.

Programs

  • Mathematica
    nn=100;
    sqs=Select[Range[nn],SquareFreeQ[#]&&PrimeOmega[#]==2&];
    Table[Length[IntegerPartitions[n,All,sqs]],{n,sqs}]

Formula

a(n) = A002100(A006881(n)).

A338902 Number of integer partitions of the n-th semiprime into semiprimes.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 7, 7, 10, 17, 25, 21, 34, 34, 73, 87, 103, 149, 176, 206, 281, 344, 479, 725, 881, 1311, 1597, 1742, 1841, 2445, 2808, 3052, 3222, 6784, 9298, 11989, 14533, 15384, 17414, 18581, 19680, 28284, 35862, 38125, 57095, 60582, 64010, 71730, 76016
Offset: 1

Views

Author

Gus Wiseman, Nov 24 2020

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers.

Examples

			The a(1) = 1 through a(33) = 17 partitions of 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, where A-Z = 10-35:
  4  6  9  A   E    F   L     M      P      Q       X
           64  A4   96  F6    994    FA     M4      EA9
               644      966   A66    L4     AA6     F99
                        9444  E44    A96    E66     FE4
                              6664   F64    9944    L66
                              A444   9664   A664    P44
                              64444  94444  E444    9996
                                            66644   AA94
                                            A4444   E964
                                            644444  F666
                                                    FA44
                                                    L444
                                                    96666
                                                    A9644
                                                    F6444
                                                    966444
                                                    9444444
		

Crossrefs

A002100 counts partitions into squarefree semiprimes.
A056768 uses primes instead of semiprimes.
A101048 counts partitions into semiprimes.
A338903 is the squarefree version.
A339112 includes the Heinz numbers of these partitions.
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A037143 lists primes and semiprimes.
A084126 and A084127 give the prime factors of semiprimes.
A320655 counts factorizations into semiprimes.
A338898/A338912/A338913 give prime indices of semiprimes, with sum/difference/product A176504/A176506/A087794.
A338899/A270650/A270652 give prime indices of squarefree semiprimes.

Programs

  • Mathematica
    nn=100;Table[Length[IntegerPartitions[n,All,Select[Range[nn],PrimeOmega[#]==2&]]],{n,Select[Range[nn],PrimeOmega[#]==2&]}]

Formula

a(n) = A101048(A001358(n)).

A338909 Numbers of the form prime(x) * prime(y) where x and y have a common divisor > 1.

Original entry on oeis.org

9, 21, 25, 39, 49, 57, 65, 87, 91, 111, 115, 121, 129, 133, 159, 169, 183, 185, 203, 213, 235, 237, 247, 259, 267, 289, 299, 301, 303, 305, 319, 321, 339, 361, 365, 371, 377, 393, 417, 427, 445, 453, 481, 489, 497, 515, 517, 519, 529, 543, 551, 553, 559, 565
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2020

Keywords

Examples

			The sequence of terms together with their prime indices begins:
      9: {2,2}     169: {6,6}     319: {5,10}
     21: {2,4}     183: {2,18}    321: {2,28}
     25: {3,3}     185: {3,12}    339: {2,30}
     39: {2,6}     203: {4,10}    361: {8,8}
     49: {4,4}     213: {2,20}    365: {3,21}
     57: {2,8}     235: {3,15}    371: {4,16}
     65: {3,6}     237: {2,22}    377: {6,10}
     87: {2,10}    247: {6,8}     393: {2,32}
     91: {4,6}     259: {4,12}    417: {2,34}
    111: {2,12}    267: {2,24}    427: {4,18}
    115: {3,9}     289: {7,7}     445: {3,24}
    121: {5,5}     299: {6,9}     453: {2,36}
    129: {2,14}    301: {4,14}    481: {6,12}
    133: {4,8}     303: {2,26}    489: {2,38}
    159: {2,16}    305: {3,18}    497: {4,20}
		

Crossrefs

A082023 counts partitions with these as Heinz numbers, complement A023022.
A300912 is the complement in A001358.
A339002 is the squarefree case.
A001221 counts distinct prime indices.
A001222 counts prime indices.
A001358 lists semiprimes, with odds A046315 and evens A100484.
A004526 counts 2-part partitions, with strict case A140106 (shifted left).
A006881 lists squarefree semiprimes, with odds A046388 and evens A100484.
A176504/A176506/A087794 give sum/difference/product of semiprime indices.
A318990 lists semiprimes with divisible indices.
A320655 counts factorizations into semiprimes.
A338898, A338912, and A338913 give semiprime indices.
A338899, A270650, and A270652 give squarefree semiprime indices.
A338910 lists semiprimes with odd indices.
A338911 lists semiprimes with even indices.

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]==2&&GCD@@PrimePi/@First/@FactorInteger[#]>1&]

Formula

Equals A001358 \ A300912.
Equals A339002 \/ (A001248 \ {4}).

A339194 Sum of all squarefree semiprimes with greater prime factor prime(n).

Original entry on oeis.org

0, 6, 25, 70, 187, 364, 697, 1102, 1771, 2900, 3999, 5920, 8077, 10234, 13207, 17384, 22479, 26840, 33567, 40328, 46647, 56248, 65653, 77786, 93411, 107060, 119583, 135248, 149439, 167240, 202311, 225320, 253587, 276332, 316923, 343676, 381039, 421192, 458749
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2020

Keywords

Examples

			The triangle A339116 with row sums equal to this sequence begins (n > 1):
    6 = 6
   25 = 10 + 15
   70 = 14 + 21 + 35
  187 = 22 + 33 + 55 + 77
		

Crossrefs

A025129 gives sums of squarefree semiprimes by weight, row sums of A338905.
A143215 is the not necessarily squarefree version, row sums of A087112.
A339116 is a triangle of squarefree semiprimes with these row sums.
A339360 looks at all squarefree numbers, row sums of A339195.
A001358 lists semiprimes.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd terms A046388.
A024697 is the sum of semiprimes of weight n.
A168472 gives partial sums of squarefree semiprimes.
A332765 gives the greatest squarefree semiprime of weight n.
A338898/A338912/A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338904 groups semiprimes by weight.
A338907/A338908 list squarefree semiprimes of odd/even weight.

Programs

  • Mathematica
    Table[Sum[Prime[i]*Prime[j],{j,i-1}],{i,10}]
  • PARI
    a(n) = prime(n)*vecsum(primes(n-1)); \\ Michel Marcus, Jun 15 2024

Formula

a(n) = prime(n) * Sum_{k=1..n-1} prime(k) = prime(n) * A007504(n-1).
a(n) = A024447(n) - A024447(n-1).
a(n) = A034960(n) - A143215(n). - Marco Zárate, Jun 14 2024

A339362 Sum of prime indices of the n-th squarefree semiprime.

Original entry on oeis.org

3, 4, 5, 5, 6, 6, 7, 7, 8, 7, 9, 8, 10, 9, 8, 10, 11, 12, 9, 11, 13, 9, 14, 10, 15, 12, 10, 13, 16, 11, 17, 14, 12, 18, 11, 19, 15, 16, 12, 20, 17, 21, 11, 13, 22, 14, 23, 18, 13, 24, 19, 25, 20, 15, 12, 26, 21, 27, 14, 16, 28, 13, 22, 29, 17, 15, 30, 23, 13
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2020

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of all squarefree semiprimes together with the sums of their prime indices begins:
   6: 1 + 2 = 3
  10: 1 + 3 = 4
  14: 1 + 4 = 5
  15: 2 + 3 = 5
  21: 2 + 4 = 6
  22: 1 + 5 = 6
  26: 1 + 6 = 7
  33: 2 + 5 = 7
  34: 1 + 7 = 8
  35: 3 + 4 = 7
		

Crossrefs

A001358 lists semiprimes.
A003963 gives the product of prime indices of n.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes.
A025129 gives the sum of squarefree semiprimes of weight n.
A056239 (weight) gives the sum of prime indices of n.
A332765/A339114 give the greatest/least squarefree semiprime of weight n.
A338898/A338912/A338913 give the prime indices of semiprimes, with product/sum/difference A087794/A176504/A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with product/sum/difference A339361/A339362/A338900.
A338904 groups semiprimes by weight.
A338905 groups squarefree semiprimes by weight.
A338907/A338908 list squarefree semiprimes of odd/even weight.
A339116 groups squarefree semiprimes by greater prime factor.

Programs

  • Mathematica
    Table[Plus@@PrimePi/@First/@FactorInteger[n],{n,Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]

Formula

a(n) = A056239(A006881(n)).
a(n) = A270650(n) + A270652(n).

A339002 Numbers of the form prime(x) * prime(y) where x and y are distinct and have a common divisor > 1.

Original entry on oeis.org

21, 39, 57, 65, 87, 91, 111, 115, 129, 133, 159, 183, 185, 203, 213, 235, 237, 247, 259, 267, 299, 301, 303, 305, 319, 321, 339, 365, 371, 377, 393, 417, 427, 445, 453, 481, 489, 497, 515, 517, 519, 543, 551, 553, 559, 565, 579, 597, 611, 623, 669, 685, 687
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2020

Keywords

Examples

			The sequence of terms together with their prime indices begins:
     21: {2,4}     235: {3,15}    393: {2,32}
     39: {2,6}     237: {2,22}    417: {2,34}
     57: {2,8}     247: {6,8}     427: {4,18}
     65: {3,6}     259: {4,12}    445: {3,24}
     87: {2,10}    267: {2,24}    453: {2,36}
     91: {4,6}     299: {6,9}     481: {6,12}
    111: {2,12}    301: {4,14}    489: {2,38}
    115: {3,9}     303: {2,26}    497: {4,20}
    129: {2,14}    305: {3,18}    515: {3,27}
    133: {4,8}     319: {5,10}    517: {5,15}
    159: {2,16}    321: {2,28}    519: {2,40}
    183: {2,18}    339: {2,30}    543: {2,42}
    185: {3,12}    365: {3,21}    551: {8,10}
    203: {4,10}    371: {4,16}    553: {4,22}
    213: {2,20}    377: {6,10}    559: {6,14}
		

Crossrefs

A300912 is the complement in A001358.
A338909 is the not necessarily squarefree version.
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A339005 lists products of pairs of distinct primes of divisible index.
A320656 counts factorizations into squarefree semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338910/A338911 list products of pairs of primes both of odd/even index.
A339003/A339004 list squarefree semiprimes of odd/even index.

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&&GCD@@PrimePi/@First/@FactorInteger[#]>1&]

A339361 Product of prime indices of the n-th squarefree semiprime.

Original entry on oeis.org

2, 3, 4, 6, 8, 5, 6, 10, 7, 12, 8, 12, 9, 14, 15, 16, 10, 11, 18, 18, 12, 20, 13, 21, 14, 20, 24, 22, 15, 24, 16, 24, 27, 17, 28, 18, 26, 28, 32, 19, 30, 20, 30, 30, 21, 33, 22, 32, 36, 23, 34, 24, 36, 36, 35, 25, 38, 26, 40, 39, 27, 40, 40, 28, 42, 44, 29, 42
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2020

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of all squarefree semiprimes together with the products of their prime indices begins:
   6: 1 * 2 = 2
  10: 1 * 3 = 3
  14: 1 * 4 = 4
  15: 2 * 3 = 6
  21: 2 * 4 = 8
  22: 1 * 5 = 5
  26: 1 * 6 = 6
  33: 2 * 5 = 10
  34: 1 * 7 = 7
  35: 3 * 4 = 12
		

Crossrefs

A001358 lists semiprimes.
A003963 gives the product of prime indices of n.
A005117 lists squarefree numbers.
A006881 lists squarefree semiprimes.
A025129 is the sum of squarefree semiprimes of weight n.
A332765/A339114 give the greatest/least squarefree semiprime of weight n.
A338898/A338912/A338913 give the prime indices of semiprimes, with product/sum/difference A087794/A176504/A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with product/sum/difference A339361/A339362/A338900.
A338905 groups squarefree semiprimes by weight.
A338907/A338908 list squarefree semiprimes of odd/even weight.
A339116 groups squarefree semiprimes by greater prime factor.

Programs

  • Mathematica
    Table[Times@@PrimePi/@First/@FactorInteger[n],{n,Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]

Formula

a(n) = A003963(A006881(n)).
a(n) = A270650(n) * A270652(n).

A358104 Unreduced numerator of the n-th divisible pair, where pairs are ordered by Heinz number. Greater prime index of A318990(n).

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 5, 3, 6, 7, 8, 6, 9, 4, 8, 10, 11, 6, 12, 13, 14, 10, 15, 16, 12, 9, 17, 5, 18, 14, 8, 19, 20, 21, 22, 16, 23, 6, 24, 18, 12, 25, 26, 27, 20, 28, 29, 30, 15, 22, 31, 12, 32, 24, 33, 34, 7, 35, 36, 26, 18, 37, 10, 28, 38, 39, 30, 40, 41, 8, 42
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The 12th divisible pair is (2,6) so a(12) = 6.
		

Crossrefs

The divisible pairs are ranked by A318990, proper A339005.
For all semiprimes we have A338913.
The quotient of the pair is A358103.
The denominator is A358105.
The reduced version for all semiprimes is A358192, denominator A358193.
A000040 lists the primes.
A001222 counts prime indices, distinct A001221.
A001358 lists the semiprimes, squarefree A006881.
A003963 multiplies together prime indices.
A056239 adds up prime indices.
A318991 ranks divisor-chains.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Join@@Table[Cases[primeMS[n],{x_,y_}/;Divisible[y,x]:>y,{0}],{n,1000}]

Formula

A358103(n) = a(n)/A358105(n).

A358105 Unreduced denominator of the n-th divisible pair, where pairs are ordered by Heinz number. Lesser prime index of A318990(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 4, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 5, 1, 2, 4, 1, 1, 1, 1, 2, 1, 6, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 4, 1, 2, 1, 1, 7, 1, 1, 2, 3, 1, 5, 2, 1, 1, 2, 1, 1, 8, 1, 3, 4, 1, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The 12th divisible pair is (2,6) so a(12) = 2.
		

Crossrefs

The divisible pairs are ranked by A318990, proper A339005.
For all semiprimes we have A338912, greater A338913.
The quotient of the pair is A358103.
The reduced version for all semiprimes is A358193, numerator A358192.
A000040 lists the primes.
A001222 counts prime indices, distinct A001221.
A001358 lists the semiprimes, squarefree A006881.
A003963 multiplies together prime indices.
A056239 adds up prime indices.
A318991 ranks divisor-chains.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Join@@Table[Cases[primeMS[n],{x_,y_}/;Divisible[y,x]:>x,{0}],{n,1000}]

Formula

A358103(n) = A358104(n)/a(n).

A358192 Numerator of the quotient of the prime indices of the n-th semiprime.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 4, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 2, 1, 5, 3, 1, 3, 1, 1, 4, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 3, 1, 5, 1, 1, 3, 4, 1, 2, 6, 1, 1, 1, 3, 2, 5, 1, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 03 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The 31st semiprime has prime indices (4,6), so the quotient is 4/6 = 2/3; hence a(31) = 2.
		

Crossrefs

The divisible pairs are ranked by A318990, proper A339005.
The unreduced pair is (A338912, A338913).
The quotients of divisible pairs are A358103.
The restriction to divisible pairs is A358104, denominator A358105.
The denominator is A358193.
A000040 lists the primes.
A001222 counts prime indices, distinct A001221.
A001358 lists the semiprimes, squarefree A006881.
A003963 multiplies together prime indices.
A056239 adds up prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Numerator/@Divide@@@primeMS/@Select[Range[100],PrimeOmega[#]==2&]
Previous Showing 31-40 of 44 results. Next