cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A318226 Number of inequivalent leaf-colorings of rooted trees with n nodes.

Original entry on oeis.org

1, 1, 3, 8, 25, 80, 286, 1070, 4280, 17946, 78907, 361248, 1718001, 8456130, 42980034, 225066289, 1212028798, 6701265897, 37986122037, 220477639797, 1308833637621, 7938564964369, 49151551028767, 310388888456536, 1997635594602629, 13093695854320203, 87349973125826943
Offset: 1

Views

Author

Gus Wiseman, Aug 21 2018

Keywords

Examples

			Inequivalent representatives of the a(5) = 25 leaf-colorings:
(1111) (11(1)) (1(11)) ((111)) ((1)(1)) (1((1))) ((1(1))) (((11))) ((((1))))
(1112) (11(2)) (1(12)) ((112)) ((1)(2)) (1((2))) ((1(2))) (((12)))
(1122) (12(1)) (1(22)) ((123))
(1123) (12(3)) (1(23))
(1234)
		

Crossrefs

Programs

  • Mathematica
    undats[m_]:=Union[DeleteCases[Cases[m,_?AtomQ,{0,Infinity},Heads->True],List]];
    expnorm[m_]:=If[Length[undats[m]]==0,m,If[undats[m]!=Range[Max@@undats[m]],expnorm[m/.Rule@@@Table[{(undats[m])[[i]],i},{i,Length[undats[m]]}]],First[Sort[expnorm[m,1]]]]];expnorm[m_,aft_]:=If[Length[undats[m]]<=aft,{m},With[{mx=Table[Count[m,i,{0,Infinity},Heads->True],{i,Select[undats[m],#>=aft&]}]},Union@@(expnorm[#,aft+1]&/@Union[Table[MapAt[Sort,m/.{par+aft-1->aft,aft->par+aft-1},Position[m,[__]]],{par,First/@Position[mx,Max[mx]]}]])]];
    urt[n_]:=urt[n]=If[n==1,{{}},Join@@Table[Union[Sort/@Tuples[urt/@c]],{c,IntegerPartitions[n-1]}]];
    slip[e_,l_,q_]:=ReplacePart[e,Rule@@@Transpose[{Position[e,l],q}]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Join@@Table[Union[expnorm/@Table[slip[tree,{},seq],{seq,Join@@Permutations/@allnorm[Count[tree,{},{0,Infinity},Heads->True]]}]],{tree,urt[n]}]],{n,7}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(Z=x*sv(1), p = Z + O(x^2)); for(n=2, n, p = Z-x + x*sEulerT(p)); p}
    InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 13 2020

Extensions

Terms a(9) and beyond from Andrew Howroyd, Dec 10 2020

A318228 Number of inequivalent leaf-colorings of planted achiral trees with n nodes.

Original entry on oeis.org

1, 1, 3, 6, 13, 20, 43, 58, 115, 171, 323, 379, 1034, 1135, 2321, 4327, 8915, 9212, 33939, 34429, 128414, 234017, 417721, 418976, 2931624, 5096391, 11770830, 20357876, 64853630, 64858195
Offset: 1

Views

Author

Gus Wiseman, Aug 21 2018

Keywords

Comments

In a planted achiral tree, all branches directly under any given branch are identical.

Examples

			Inequivalent representatives of the a(5) = 13 leaf-colorings:
  (1111)  ((111))  ((1)(1))  (((11)))  ((((1))))
  (1112)  ((112))  ((1)(2))  (((12)))
  (1122)  ((123))
  (1123)
  (1234)
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    G(v)={my(t=2, p=sv(1)); for(i=1, #v, my(d=v[i]); if(d>1, p=sApplyCI(symGroupCycleIndex(d), d, p, t)); t=t*d+1); p}
    cycleIndex(n)={my(recurse(r,v)=if(r==1, G(v), sumdiv(r-1, d, self()((r-1)/d, concat(d,v))))); recurse(n,[])}
    a(n)={StructsByCycleIndex(n, cycleIndex(n), n)} \\ Andrew Howroyd, Dec 13 2020

Extensions

a(9)-a(30) from Andrew Howroyd, Dec 11 2020

A322396 Number of unlabeled simple connected graphs with n vertices whose bridges are all leaves, meaning at least one end of any bridge is an endpoint of the graph.

Original entry on oeis.org

1, 1, 1, 2, 5, 18, 98, 779, 10589, 255790, 11633297, 1004417286, 163944008107, 50324877640599, 29001521193534445, 31396727025729968365, 63969154112074956299242, 245871360738448777028919520, 1787330701747389106609369225312, 24636017249593067184544456944967278
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Crossrefs

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    bridgelessGraphs(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
    cycleIndexSeries(n)={1+sSubstOp(bridgelessGraphs(n), symGroupSeries(n))}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020

Extensions

a(6)-a(10) from Andrew Howroyd, Dec 08 2018
Terms a(11) and beyond from Andrew Howroyd, Dec 31 2020

A007145 Number of rooted bridgeless graphs with n nodes.

Original entry on oeis.org

1, 0, 1, 4, 24, 193, 2420, 47912, 1600524, 93253226, 9694177479, 1822463625183, 625829508087155, 395785845695978077, 464137111800208818956, 1015091598240432264958267, 4160447480034069826186309689, 32088552194861245127627790541334
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(g=graphsSeries(n), gcr=sPoint(g)/g); sSolve( gcr, x*sv(1)*sExp(gcr) )}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 27 2020

Extensions

Reference gives first 22 terms (terms a(21) and a(22) contain typos).
More terms from R. J. Mathar, Jun 06 2007

A317584 Number of multiset partitions of strongly normal multisets of size n such that all blocks have the same size.

Original entry on oeis.org

1, 4, 6, 19, 14, 113, 30, 584, 1150, 4023, 112, 119866, 202, 432061, 5442765, 16646712, 594, 738090160, 980, 13160013662, 113864783987, 39049423043, 2510, 44452496723053, 19373518220009, 21970704599961, 8858890258339122, 43233899006497146, 9130, 4019875470540832643
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.

Examples

			The a(4) = 19 multiset partitions:
  {{1,1,1,1}}, {{1,1},{1,1}}, {{1},{1},{1},{1}},
  {{1,1,1,2}}, {{1,1},{1,2}}, {{1},{1},{1},{2}},
  {{1,1,2,2}}, {{1,1},{2,2}}, {{1,2},{1,2}}, {{1},{1},{2},{2}},
  {{1,1,2,3}}, {{1,1},{2,3}}, {{1,2},{1,3}}, {{1},{1},{2},{3}},
  {{1,2,3,4}}, {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}}, {{1},{2},{3},{4}}.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[Join@@mps/@strnorm[n],SameQ@@Length/@#&]],{n,6}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndex(n)={sum(n=1, n, x^n*sumdiv(n, d, sApplyCI(symGroupCycleIndex(d), d, symGroupCycleIndex(n/d), n/d))) + O(x*x^n)}
    StronglyNormalLabelingsSeq(cycleIndex(15)) \\ Andrew Howroyd, Jan 01 2021

Formula

a(p) = 2*A000041(p) for prime p. - Andrew Howroyd, Jan 01 2021

Extensions

Terms a(9) and beyond from Andrew Howroyd, Jan 01 2021

A320664 Number of non-isomorphic multiset partitions of weight n with all parts of odd size.

Original entry on oeis.org

1, 1, 2, 6, 12, 30, 82, 198, 533, 1459, 4039, 11634, 34095, 102520, 316456, 995709, 3215552, 10591412, 35633438, 122499429, 428988392, 1532929060, 5579867442, 20677066725, 78027003260, 299413756170, 1168536196157, 4635420192861, 18678567555721, 76451691937279, 317625507668759
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

Also the number of non-isomorphic multiset partitions of weight n in which each vertex appears an odd number of times.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 12 multiset partitions with all parts of odd size:
  {{1}}  {{1},{1}}  {{1,1,1}}      {{1},{1,1,1}}
         {{1},{2}}  {{1,2,2}}      {{1},{1,2,2}}
                    {{1,2,3}}      {{1},{2,2,2}}
                    {{1},{1},{1}}  {{1},{2,3,3}}
                    {{1},{2},{2}}  {{1},{2,3,4}}
                    {{1},{2},{3}}  {{2},{1,2,2}}
                                   {{3},{1,2,3}}
                                   {{1},{1},{1},{1}}
                                   {{1},{1},{2},{2}}
                                   {{1},{2},{2},{2}}
                                   {{1},{2},{3},{3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seq(n)={my(A=symGroupSeries(n)); NumUnlabeledObjsSeq(sCartProd(sExp(A), sExp((A-subst(A,x,-x))/2)))} \\ Andrew Howroyd, Jan 17 2023
    
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    J(q, t, k, y)={1/prod(j=1, #q, my(s=q[j], g=gcd(s,t)); (1 + O(x*x^k) - y^(s/g)*x^(s*t/g))^g)}
    K(q, t, k) = Vec(J(q,t,k,1)-J(q,t,k,-1), -k)/2
    a(n)={my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(x*Ser(sum(t=1, n, K(q, t, n)/t))), n)); s/n!} \\ Andrew Howroyd, Jan 17 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 16 2023

A259115 Number of unrooted binary ordered tanglegrams of size n.

Original entry on oeis.org

1, 1, 1, 2, 4, 31, 243, 3532, 62810, 1390718, 36080361, 1076477512, 36281518847, 1363869480379, 56587508558171, 2569141702825037, 126714642738385906, 6747643861563535720, 385875940575529343271, 23588199955061659841248, 1535037278334227258123709, 105961521687913311720698169
Offset: 1

Views

Author

Frederick A. Matsen IV, Jun 18 2015

Keywords

Comments

Binary tanglegrams are pairs of bifurcating (degree 3 internal node) trees with a bijection between the leaves of the trees. Two tanglegrams are isomorphic if there is an isomorphism between the trees that preserves the bijection. Unrooted means that the tanglegram is composed of unrooted trees, and ordered means that the trees are considered as an ordered pair.

Crossrefs

Cf. A258620 (tanglegrams), A259114, A259116, A258486 (tangled chains), A258487, A258488, A258489.

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    rootedBinTrees(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, n, v[n]=(sum(j=1, n-1, v[j]*v[n-j]) + if(n%2, 0, sRaiseCI(v[n/2], n/2, 2)))/2); x*Ser(v)}
    cycleIndexSeries(n)={my(g=rootedBinTrees(n), u = g + (sRaise(g,3) - g^3)/3); sCartProd(u,u)}
    NumUnlabeledObjsSeq(cycleIndexSeries(12)) \\ Andrew Howroyd, Dec 24 2020

Extensions

More terms from Ira M. Gessel, Jul 19 2015
Terms a(15) and beyond from Andrew Howroyd, Dec 24 2020

A330472 Triangle read by rows where T(n,k) is the number of non-isomorphic k-element multisets of nonempty multisets of nonempty multisets (all finite).

Original entry on oeis.org

1, 0, 1, 0, 4, 2, 0, 10, 8, 3, 0, 33, 48, 18, 5, 0, 91, 204, 118, 32, 7, 0, 298, 959, 743, 266, 58, 11, 0, 910, 4193, 4334, 1927, 519, 94, 15, 0, 3017, 18947, 25305, 13992, 4407, 966, 154, 22, 0, 9945, 84798, 145033, 97947, 36410, 9023, 1679, 236, 30
Offset: 0

Views

Author

Gus Wiseman, Dec 19 2019

Keywords

Examples

			Triangle begins:
   1
   0   1
   0   4   2
   0  10   8   3
   0  33  48  18   5
   0  91 204 118  32   7
   0 298 959 743 266  58  11
For example, row n = 3 counts the following multiset partitions:
  {{111}}      {{1}}{{11}}    {{1}}{{1}}{{1}}
  {{112}}      {{1}}{{12}}    {{1}}{{1}}{{2}}
  {{123}}      {{1}}{{23}}    {{1}}{{2}}{{3}}
  {{1}{11}}    {{2}}{{11}}
  {{1}{12}}    {{1}}{{1}{1}}
  {{1}{23}}    {{1}}{{1}{2}}
  {{2}{11}}    {{1}}{{2}{3}}
  {{1}{1}{1}}  {{2}}{{1}{1}}
  {{1}{1}{2}}
  {{1}{2}{3}}
		

Crossrefs

Row sums are A318566.
Column k = 1 is A007716 (for n > 0).
Column k = n is A000041.
Partitions of partitions of partitions are A007713.
Twice-factorizations are A050336.
If this is the 3-dimensional version, the 2-dimensional version is A317533.
See A330473 for a variation.

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    ColGf(k,n)={my(A=symGroupSeries(n)); OgfSeries(sCartProd(sExp(A), sSubstOp(polcoef(A,k,x)*x^k + O(x*x^n), sExp(A)) ))}
    M(n,m=n)={Mat(vector(m+1, k, Col(ColGf(k-1,n), -(n+1))))}
    { my(A=M(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 17 2023

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 17 2023

A340024 Number of inequivalent vertex colorings of graphs on n unlabeled vertices.

Original entry on oeis.org

1, 1, 4, 14, 89, 788, 13712, 459380, 31395800, 4304547500, 1170501781632, 626269787446920, 657129205489027200, 1350883625562244545584, 5441806297331472273603040, 42987375826579901036722653600, 666538741644051928632441002162384, 20306710978262167791045247702178986496
Offset: 0

Views

Author

Andrew Howroyd, Jan 01 2021

Keywords

Comments

Equivalence is up to permutation of the colors. Adjacent vertices may have the same color.

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    graphsCycleIndex(n)={my(s=0); forpart(p=n, s+=permcount(p) * 2^edges(p) * sMonomial(p)); s/n!}
    graphsSeries(n)={sum(k=0, n, graphsCycleIndex(k)*x^k) + O(x*x^n)}
    InequivalentColoringsSeq(graphsSeries(15))

A340027 Number of inequivalent vertex colorings of connected graphs on n unlabeled vertices.

Original entry on oeis.org

1, 1, 2, 7, 50, 520, 10665, 400220, 29204589, 4143245857, 1146827743079, 619412332805088, 653237982066620540, 1346571060160843394520, 5432476352054378478159877, 42947950068987980977264834190, 666212968663987333085874313873428, 20301440661023158546856805172595805762
Offset: 0

Views

Author

Andrew Howroyd, Jan 02 2021

Keywords

Comments

Equivalence is up to permutation of the colors. Adjacent vertices may have the same color.

Examples

			a(3) = 7 because there are 2 connected graphs on 3 vertices. The complete graph K_3 can be coloring in 3 ways (111, 112, 123) and the path graph P_3 can be colored in 4 ways (111, 112, 121, 123).
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
    graphsCycleIndex(n)={my(s=0); forpart(p=n, s+=permcount(p) * 2^edges(p) * sMonomial(p)); s/n!}
    graphsSeries(n)={sum(k=0, n, graphsCycleIndex(k)*x^k) + O(x*x^n)}
    InequivalentColoringsSeq(1+sLog(graphsSeries(15)))
Previous Showing 21-30 of 44 results. Next