A342330 Number of compositions of n with all adjacent parts (x,y) satisfying x < 2y and y < 2x.
1, 1, 2, 2, 3, 4, 4, 7, 9, 11, 17, 23, 32, 44, 63, 91, 127, 180, 255, 363, 516, 732, 1044, 1485, 2109, 3002, 4277, 6089, 8660, 12323, 17550, 24986, 35562, 50628, 72084, 102616, 146077, 207980, 296114, 421555, 600153, 854469, 1216543, 1731983, 2465842, 3510713
Offset: 0
Keywords
Examples
The a(1) = 1 through a(9) = 11 partitions: 1 2 3 4 5 6 7 8 9 11 111 22 23 33 34 35 45 1111 32 222 43 44 54 11111 111111 223 53 234 232 233 333 322 323 432 1111111 332 2223 2222 2232 11111111 2322 3222 111111111
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000 (first 1001 terms from Andrew Howroyd)
Crossrefs
The version allowing equality is A224957.
Reversing operators and changing 'and' into 'or' gives A342332.
The version allowing partial equality is A342338.
The strict case is A342341.
A000929 counts partitions with all adjacent parts x >= 2y.
A002843 counts compositions with all adjacent parts x <= 2y.
A154402 counts partitions with all adjacent parts x = 2y.
A274199 counts compositions with all adjacent parts x < 2y.
A342098 counts partitions with all adjacent parts x > 2y.
A342331 counts compositions where each part is twice or half the prior.
A342335 counts compositions with all adjacent parts x >= 2y or y = 2x.
A342337 counts compositions with all adjacent parts x = y or x = 2y.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j, j) , j=`if`(i=0, 1..n, floor(i/2)+1..min(n, 2*i-1)))) end: a:= n-> b(n, 0): seq(a(n), n=0..45); # Alois P. Heinz, Mar 15 2021
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]<2*#[[i-1]]&[[i-1]]<2*#[[i]],{i,2,Length[#]}]&]],{n,0,15}] (* Second program: *) b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - j, j], {j, If[i == 0, 1, Floor[i/2] + 1], If[i == 0, n, Min[n, 2i - 1]]}]]; a[n_] := b[n, 0]; a /@ Range[0, 45] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
-
PARI
C(n, pred)={my(M=matid(n)); for(k=1, n, for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); sum(q=1, n, M[q, ])} seq(n)={concat([1], C(n, (i,j)->i<2*j && j<2*i))} \\ Andrew Howroyd, Mar 13 2021
Extensions
Terms a(31) and beyond from Andrew Howroyd, Mar 13 2021
Comments