cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A343381 Number of strict integer partitions of n with a part dividing all the others but no part divisible by all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 4, 9, 9, 14, 14, 20, 20, 30, 30, 39, 44, 59, 59, 77, 85, 106, 114, 145, 150, 191, 205, 247, 267, 328, 345, 418, 455, 544, 582, 699, 745, 886, 962, 1117, 1209, 1430, 1523, 1778, 1932, 2225, 2406, 2792, 3001, 3456, 3750
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2021

Keywords

Comments

Alternative name: Number of strict integer partitions of n that are empty or (1) have smallest part dividing all the others and (2) have greatest part not divisible by all the others.

Examples

			The a(6) = 1 through a(16) = 14 partitions (empty column indicated by dot, A..D = 10..13):
  321   .  431   531   541    641    642    751    761    861     862
           521         721    731    651    5431   851    951     871
                       4321   5321   741    6421   941    A41     961
                                     831    7321   A31    B31     A42
                                     921           B21    6531    B41
                                     5421          6431   7431    D21
                                                   6521   7521    6541
                                                   7421   9321    7531
                                                   8321   54321   7621
                                                                  8431
                                                                  8521
                                                                  9421
                                                                  A321
                                                                  64321
		

Crossrefs

The first condition alone gives A097986.
The non-strict version is A343345 (Heinz numbers: A343340).
The second condition alone gives A343377.
The half-opposite versions are A343378 and A343379.
The opposite (and dual) version is A343380.
A000005 counts divisors.
A000009 counts strict partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&And@@IntegerQ/@(#/Min@@#)&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]

A343380 Number of strict integer partitions of n with no part dividing all the others but with a part divisible by all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 1, 4, 0, 1, 0, 2, 0, 4, 0, 3, 1, 2, 2, 5, 0, 5, 3, 4, 1, 9, 1, 5, 2, 4, 5, 11, 1, 6, 4, 11, 3, 13, 5, 10, 4, 11, 8, 14, 3, 10, 6, 9, 3, 15, 6, 14, 10, 18, 8
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2021

Keywords

Comments

Alternative name: Number of strict integer partitions of n that are either empty or (1) have smallest part not dividing all the others and (2) have greatest part divisible by all the others.

Examples

			The a(11) = 1 through a(29) = 4 partitions (empty columns indicated by dots, A..O = 10..24):
  632  .  .  .  .  .  A52  .  C43  .  C432  C64  E72   .  C643  .  K52    .  I92
                      C32                        F53               C6432     K54
                                                 I32                         O32
                                                 C632                        I632
		

Crossrefs

The first condition alone gives A341450.
The non-strict version is A343344 (Heinz numbers: A343339).
The second condition alone gives A343347.
The half-opposite versions are A343378 and A343379.
The opposite (and dual) version is A343381.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&&And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]

A339619 Number of integer partitions of n with no 1's and a part divisible by all the other parts.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 4, 1, 5, 3, 7, 2, 13, 2, 13, 9, 17, 6, 27, 7, 33, 19, 35, 16, 58, 22, 58, 39, 75, 37, 108, 44, 117, 75, 132, 88, 190, 94, 199, 147, 250, 153, 322, 180, 363, 271, 405, 286, 544, 339, 601, 458, 699, 503, 868, 608, 990, 777, 1113, 865, 1422, 993
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2021

Keywords

Comments

Alternative name: Number of integer partitions of n with no 1's that are empty or have greatest part divisible by all the other parts.

Examples

			The a(6) = 4 through a(16) = 17 partitions (A..G = 10..16):
  6    7  8     9    A      B    C       D     E        F      G
  33      44    63   55     632  66      6322  77       A5     88
  42      62    333  82          84            C2       C3     C4
  222     422        442         93            662      555    E2
          2222       622         A2            842      663    844
                     4222        444           A22      933    C22
                     22222       633           4442     6333   4444
                                 822           6332     33333  6622
                                 3333          8222     63222  8422
                                 4422          44222           A222
                                 6222          62222           44422
                                 42222         422222          63322
                                 222222        2222222         82222
                                                               442222
                                                               622222
                                                               4222222
                                                               22222222
		

Crossrefs

The dual version is A083711.
The version with 1's allowed is A130689.
The strict case is A339660.
The Heinz numbers of these partitions are the odd complement of A343337.
The strict case with 1's allowed is A343347.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],FreeQ[#,1]&&Or@@And@@IntegerQ/@(Max@@#/#)&]]],{n,0,30}]

A343340 Numbers with a prime index dividing all the other prime indices, but with no prime index divisible by all the other prime indices.

Original entry on oeis.org

30, 60, 66, 70, 90, 102, 110, 120, 132, 138, 140, 150, 154, 170, 180, 182, 186, 190, 198, 204, 210, 220, 238, 240, 246, 264, 270, 273, 276, 280, 282, 286, 290, 300, 306, 308, 310, 322, 330, 340, 350, 354, 360, 364, 372, 374, 380, 396, 402, 406, 408, 410, 414
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2021

Keywords

Comments

Alternative name: Numbers > 1 whose smallest prime index divides all the other prime indices, but whose greatest prime index is not divisible by all the other prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of partitions with greatest part not divisible by all the others, but smallest part dividing all the others (counted by A343345). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     30: {1,2,3}        182: {1,4,6}          282: {1,2,15}
     60: {1,1,2,3}      186: {1,2,11}         286: {1,5,6}
     66: {1,2,5}        190: {1,3,8}          290: {1,3,10}
     70: {1,3,4}        198: {1,2,2,5}        300: {1,1,2,3,3}
     90: {1,2,2,3}      204: {1,1,2,7}        306: {1,2,2,7}
    102: {1,2,7}        210: {1,2,3,4}        308: {1,1,4,5}
    110: {1,3,5}        220: {1,1,3,5}        310: {1,3,11}
    120: {1,1,1,2,3}    238: {1,4,7}          322: {1,4,9}
    132: {1,1,2,5}      240: {1,1,1,1,2,3}    330: {1,2,3,5}
    138: {1,2,9}        246: {1,2,13}         340: {1,1,3,7}
    140: {1,1,3,4}      264: {1,1,1,2,5}      350: {1,3,3,4}
    150: {1,2,3,3}      270: {1,2,2,2,3}      354: {1,2,17}
    154: {1,4,5}        273: {2,4,6}          360: {1,1,1,2,2,3}
    170: {1,3,7}        276: {1,1,2,9}        364: {1,1,4,6}
    180: {1,1,2,2,3}    280: {1,1,1,3,4}      372: {1,1,2,11}
		

Crossrefs

The first condition alone gives the complement of A342193.
The second condition alone gives A343337.
The partitions with these Heinz numbers are counted by A343345.
A000005 counts divisors.
A000070 counts partitions with a selected part.
A001055 counts factorizations.
A056239 adds up prime indices, row sums of A112798.
A067824 counts strict chains of divisors starting with n.
A253249 counts strict chains of divisors.

Programs

  • Mathematica
    Select[Range[2,100],With[{p=PrimePi/@First/@FactorInteger[#]},!And@@IntegerQ/@(Max@@p/p)&&And@@IntegerQ/@(p/Min@@p)]&]

Formula

Complement of A342193 in A343337.

A343348 Irregular triangle read by rows where T(n,k) is the number of strict integer partitions of n with least gap k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 0, 2, 1, 0, 1, 3, 1, 1, 0, 3, 2, 1, 0, 5, 2, 1, 0, 5, 3, 1, 0, 1, 7, 3, 1, 1, 0, 8, 4, 2, 1, 0, 10, 5, 2, 1, 0, 12, 6, 3, 1, 0, 15, 7, 3, 1, 0, 1, 17, 9, 4, 1, 1, 0, 21, 10, 4, 2, 1, 0, 25, 12, 6, 2, 1, 0, 29, 15, 6, 3, 1, 0, 35, 17, 8, 3, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2021

Keywords

Comments

The least gap (or mex) of a partition is the least positive integer that is not a part.
Row lengths are chosen to be consistent with the non-strict case A264401.

Examples

			Triangle begins:
   1
   0   1
   1   0
   1   0   1
   1   1   0
   2   1   0
   2   1   0   1
   3   1   1   0
   3   2   1   0
   5   2   1   0
   5   3   1   0   1
   7   3   1   1   0
   8   4   2   1   0
  10   5   2   1   0
  12   6   3   1   0
  15   7   3   1   0   1
		

Crossrefs

Row sums are A000009.
Row lengths are A002024.
Column k = 1 is A025147.
Column k = 2 is A025148.
The non-strict version is A264401.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A257993 gives the least gap of the partition with Heinz number n.
A339564 counts factorizations with a selected factor.
A342050 ranks partitions with even least gap.
A342051 ranks partitions with odd least gap.

Programs

  • Mathematica
    mingap[q_]:=Min@@Complement[Range[If[q=={},0,Max[q]]+1],q];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&mingap[#]==k&]],{n,0,15},{k,Round[Sqrt[2*(n+1)]]}]
Previous Showing 11-15 of 15 results.