cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 50 results. Next

A345166 Number of separable integer partitions of n without an alternating permutation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 5, 6, 7, 10, 14, 18, 21, 27, 35, 42, 54, 65, 78, 95, 117, 140, 170, 202, 239, 286, 343, 401, 476, 562, 660, 775, 910, 1056, 1241, 1444, 1678, 1948, 2267, 2615, 3031, 3502, 4036, 4647, 5356, 6143, 7068, 8101, 9274, 10613, 12151, 13856
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

A partition is separable if it has an anti-run permutation (no adjacent parts equal).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
The partitions counted by this sequence are those with 2m-1 parts with m being the multiplicity of a part which is neither the smallest or largest part. For example, 4322221 is such a partition since the multiplicity of 2 is 4, the total number of parts is 7, and 2 is neither the smallest or largest part. - Andrew Howroyd, Jan 15 2024

Examples

			The a(10) = 1 through a(16) = 6 partitions:
    32221  42221  52221  62221    43331    43332    53332
                         3222211  72221    53331    63331
                                  4222211  82221    92221
                                           3322221  4322221
                                           5222211  6222211
                                                    322222111
		

Crossrefs

Allowing alternating permutations gives A325534, ranked by A335433.
Not requiring separability gives A345165, ranked by A345171.
Permutations of this type are ranked by A345169.
The Heinz numbers of these partitions are A345173.
Numbers with a factorization of this type are A348609.
A000041 counts integer partitions.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions, also A025048, A025049.
A325535 counts inseparable partitions, ranked by A335448.
A344654 counts non-twin partitions w/o alt permutation, rank A344653.
A345162 counts normal partitions w/o alt permutation, complement A345163.
A345170 counts partitions w/ alt permutation, ranked by A345172.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]!={}&&Select[Permutations[#],wigQ]=={}&]],{n,0,15}]

Formula

The Heinz numbers of these partitions are A345173 = A345171 /\ A335433.
a(n) = A325534(n) - A345170(n). - Andrew Howroyd, Jan 15 2024

Extensions

a(26) onwards from Andrew Howroyd, Jan 15 2024

A344742 Numbers whose prime factors have a permutation with no consecutive monotone triple, i.e., no triple (..., x, y, z, ...) such that either x <= y <= z or x >= y >= z.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Gus Wiseman, Jun 12 2021

Keywords

Comments

Differs from A335433 in having all squares of primes (A001248) and lacking 270 etc.
Also Heinz numbers of integer partitions that are either a twin (x,x) or have a wiggly permutation.
(1) The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
(2) A sequence is wiggly if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no wiggly permutations, even though it has anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The sequence of terms together with their prime indices begins:
      1: {}          18: {1,2,2}     36: {1,1,2,2}
      2: {1}         19: {8}         37: {12}
      3: {2}         20: {1,1,3}     38: {1,8}
      4: {1,1}       21: {2,4}       39: {2,6}
      5: {3}         22: {1,5}       41: {13}
      6: {1,2}       23: {9}         42: {1,2,4}
      7: {4}         25: {3,3}       43: {14}
      9: {2,2}       26: {1,6}       44: {1,1,5}
     10: {1,3}       28: {1,1,4}     45: {2,2,3}
     11: {5}         29: {10}        46: {1,9}
     12: {1,1,2}     30: {1,2,3}     47: {15}
     13: {6}         31: {11}        49: {4,4}
     14: {1,4}       33: {2,5}       50: {1,3,3}
     15: {2,3}       34: {1,7}       51: {2,7}
     17: {7}         35: {3,4}       52: {1,1,6}
For example, the prime factors of 120 are (2,2,2,3,5), with the two wiggly permutations (2,3,2,5,2) and (2,5,2,3,2), so 120 is in the sequence.
		

Crossrefs

Positions of nonzero terms in A344606.
The complement is A344653, counted by A344654.
These partitions are counted by A344740.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A001248 lists squares of primes.
A001250 counts wiggly permutations.
A003242 counts anti-run compositions.
A011782 counts compositions.
A025047 counts wiggly compositions (ascend: A025048, descend: A025049).
A056239 adds up prime indices, row sums of A112798.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts wiggly compositions with twins.
A345164 counts wiggly permutations of prime indices.
A345165 counts partitions without a wiggly permutation, ranked by A345171.
A345170 counts partitions with a wiggly permutation, ranked by A345172.
A345192 counts non-wiggly compositions.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Flatten[ConstantArray@@@FactorInteger[#]]],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]!={}&]

Formula

Union of A345172 (wiggly) and A001248 (squares of primes).

A344741 Number of integer partitions of 2n with reverse-alternating sum -2.

Original entry on oeis.org

0, 0, 1, 2, 4, 8, 14, 24, 39, 62, 95, 144, 212, 309, 442, 626, 873, 1209, 1653, 2245, 3019, 4035, 5348, 7051, 9229, 12022, 15565, 20063, 25722, 32847, 41746, 52862, 66657, 83768, 104873, 130889, 162797, 201902, 249620, 307789, 378428, 464122, 567721, 692828, 843448
Offset: 0

Views

Author

Gus Wiseman, Jun 08 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(r-1) times the number of odd parts, where r is the greatest part, so a(n) is the number of integer partitions of 2n with exactly two odd parts, neither of which is the greatest.
Also the number of reversed integer partitions of 2n with alternating sum -2.

Examples

			The a(2) = 1 through a(6) = 14 partitions:
  (31)  (42)    (53)      (64)        (75)
        (3111)  (3221)    (3331)      (4332)
                (4211)    (4222)      (4431)
                (311111)  (4321)      (5322)
                          (5311)      (5421)
                          (322111)    (6411)
                          (421111)    (322221)
                          (31111111)  (333111)
                                      (422211)
                                      (432111)
                                      (531111)
                                      (32211111)
                                      (42111111)
                                      (3111111111)
		

Crossrefs

The version for -1 instead of -2 is A000070.
The non-reversed negative version is A000097.
The ordered version appears to be A001700.
The version for 1 instead of -2 is A035363.
The whole set of partitions of 2n is counted by A058696.
The strict case appears to be A065033.
The version for -1 instead of -2 is A306145.
The version for 2 instead of -2 is A344613.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives alternating sums of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],sats[#]==-2&]],{n,0,30,2}]
    - or -
    Table[Length[Select[IntegerPartitions[n],EvenQ[Max[#]]&&Count[#,_?OddQ]==2&]],{n,0,30,2}]

Extensions

More terms from Bert Dobbelaere, Jun 12 2021

A345195 Number of non-alternating anti-run compositions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 4, 10, 23, 49, 96, 192, 368, 692, 1299, 2403, 4400, 8029, 14556, 26253, 47206, 84574, 151066, 269244, 478826, 849921, 1506309, 2665829, 4711971, 8319763, 14675786, 25865400, 45552678, 80171353, 141015313, 247905305, 435614270, 765132824
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
An anti-run (separation or Carlitz composition) is a sequence with no adjacent equal parts.

Examples

			The a(9) = 23 anti-runs:
  (1,2,6)  (1,2,4,2)  (1,2,1,2,3)
  (1,3,5)  (1,2,5,1)  (1,2,3,1,2)
  (2,3,4)  (1,3,4,1)  (1,2,3,2,1)
  (4,3,2)  (1,4,3,1)  (1,3,2,1,2)
  (5,3,1)  (1,5,2,1)  (2,1,2,3,1)
  (6,2,1)  (2,1,2,4)  (2,1,3,2,1)
           (2,4,2,1)  (3,2,1,2,1)
           (3,1,2,3)
           (3,2,1,3)
           (4,2,1,2)
		

Crossrefs

Non-anti-run compositions are counted by A261983.
A version counting partitions is A345166, ranked by A345173.
These compositions are ranked by A345169.
Non-alternating compositions are counted by A345192, ranked by A345168.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A032020 counts strict compositions.
A106356 counts compositions by number of maximal anti-runs.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A345164 counts alternating permutations of prime indices, w/ twins A344606.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A345194 counts alternating patterns (with twins: A344605).

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    sepQ[y_]:=!MatchQ[y,{_,x_,x_,_}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], sepQ[#]&&!wigQ[#]&]],{n,0,15}]

Formula

a(n) = A003242(n) - A025047(n).

Extensions

a(21) onwards from Andrew Howroyd, Jan 31 2024

A344652 Number of permutations of the prime indices of n with no adjacent triples (..., x, y, z, ...) such that x <= y <= z.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 0, 2, 1, 5, 1, 0, 2, 2, 2, 3, 1, 2, 2, 1, 1, 5, 1, 2, 2, 2, 1, 0, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 7, 1, 2, 2, 0, 2, 5, 1, 2, 2, 5, 1, 2, 1, 2, 2, 2, 2, 5, 1, 0, 0, 2, 1, 7, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 17 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The permutations for n = 2, 6, 8, 30, 36, 60, 180, 210, 360:
  (1)  (12)  (132)  (1212)  (1213)  (12132)  (1324)  (121213)
       (21)  (213)  (2121)  (1312)  (13212)  (1423)  (121312)
             (231)  (2211)  (1321)  (13221)  (1432)  (121321)
             (312)          (2131)  (21213)  (2143)  (131212)
             (321)          (2311)  (21312)  (2314)  (132121)
                            (3121)  (21321)  (2413)  (132211)
                            (3211)  (22131)  (2431)  (212131)
                                    (23121)  (3142)  (213121)
                                    (23211)  (3214)  (213211)
                                    (31212)  (3241)  (221311)
                                    (32121)  (3412)  (231211)
                                    (32211)  (3421)  (312121)
                                             (4132)  (321211)
                                             (4213)
                                             (4231)
                                             (4312)
                                             (4321)
		

Crossrefs

All permutations of prime indices are counted by A008480.
The case of permutations is A049774.
Avoiding (3,2,1) also gives A344606.
The wiggly case is A345164.
A001250 counts wiggly permutations.
A025047 counts wiggly compositions (ascend: A025048, descend: A025049).
A056239 adds up prime indices, row sums of A112798.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A335452 counts anti-run permutations of prime indices.
A345170 counts partitions with a wiggly permutation, ranked by A345172.
A345192 counts non-wiggly compositions, ranked by A345168.
Counting compositions by patterns:
- A102726 avoiding (1,2,3).
- A128761 avoiding (1,2,3) adjacent.
- A335514 matching (1,2,3).
- A344614 avoiding (1,2,3) and (3,2,1) adjacent.
- A344615 weakly avoiding (1,2,3) adjacent.

Programs

  • Mathematica
    Table[Length[Select[Permutations[Flatten[ ConstantArray@@@FactorInteger[n]]],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z]&]],{n,100}]

A345162 Number of integer partitions of n with no alternating permutation covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 2, 3, 3, 5, 6, 6, 8, 10, 11, 15, 16, 18, 23, 27, 30, 35, 41, 47, 54, 62, 71, 82, 92, 103, 121, 137, 151, 173, 195, 220, 248, 277, 311, 350, 393, 435, 488, 546, 605, 678, 754, 835, 928, 1029, 1141, 1267, 1400, 1544, 1712, 1891, 2081, 2298, 2533, 2785, 3068
Offset: 0

Views

Author

Gus Wiseman, Jun 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,3,2,2,2,2,1) has no alternating permutations, even though it has anti-run permutations (2,3,2,3,2,1,2), (2,3,2,1,2,3,2), and (2,1,2,3,2,3,2).
Sequences covering an initial interval (patterns) are counted by A000670 and ranked by A333217.

Examples

			The a(2) = 1 through a(10) = 6 partitions:
  11  111  1111  2111   21111   2221     221111    22221      32221
                 11111  111111  211111   2111111   321111     222211
                                1111111  11111111  2211111    3211111
                                                   21111111   22111111
                                                   111111111  211111111
                                                              1111111111
		

Crossrefs

The complement in covering partitions is counted by A345163.
Not requiring normality gives A345165, ranked by A345171.
The separable case is A345166.
A000041 counts integer partitions.
A000670 counts patterns, ranked by A333217.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions, directed A025048/A025049.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts alternating compositions with twins.
A344605 counts alternating patterns with twins.
A345164 counts alternating permutations of prime indices.
A345170 counts partitions with a alternating permutation, ranked by A345172.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&Select[Permutations[#],wigQ[#]&]=={}&]],{n,0,15}]
  • PARI
    P(n,m)={Vec(1/prod(k=1, m, 1-y*x^k, 1+O(x*x^n)))}
    a(n) = {(n >= 2) + sum(k=2, (sqrtint(8*n+1)-1)\2, my(r=n-binomial(k+1,2), v=P(r, k)); sum(i=1, min(k,2*r\k), sum(j=k-1, (2*r-(k-1)*(i-1))\(i+1), my(p=(j+k+(i==1||i==k))\2); if(p*i<=r, polcoef(v[r-p*i+1],j-p)) )))} \\ Andrew Howroyd, Jan 31 2024

Formula

a(n) = A000009(n) - A345163(n). - Andrew Howroyd, Jan 31 2024

Extensions

a(26) onwards from Andrew Howroyd, Jan 31 2024

A349058 Number of weakly alternating patterns of length n.

Original entry on oeis.org

1, 1, 3, 11, 43, 203, 1123, 7235, 53171, 439595, 4037371, 40787579, 449500595, 5366500163, 68997666867, 950475759899, 13966170378907, 218043973366091, 3604426485899203, 62894287709616755, 1155219405655975763, 22279674547003283003, 450151092568978825707
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2021

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.

Examples

			The a(1) = 1 through a(3) = 11 patterns:
  (1)  (1,1)  (1,1,1)
       (1,2)  (1,1,2)
       (2,1)  (1,2,1)
              (1,2,2)
              (1,3,2)
              (2,1,1)
              (2,1,2)
              (2,1,3)
              (2,2,1)
              (2,3,1)
              (3,1,2)
		

Crossrefs

The strict case is A001250, complement A348615.
The strong case of compositions is A025047, ranked by A345167.
The unordered version is A052955.
The strong case is A345194, with twins A344605. Also the directed case.
The version for compositions is A349052, complement A349053.
The version for permutations of prime indices: A349056, complement A349797.
The version for compositions is ranked by A349057.
The version for ordered factorizations is A349059, strong A348610.
The version for partitions is A349060, complement A349061.
A003242 counts Carlitz (anti-run) compositions.
A005649 counts anti-run patterns.
A344604 counts alternating compositions with twins.
A345163 counts normal partitions with an alternating permutation.
A345170 counts partitions w/ an alternating permutation, complement A345165.
A345192 counts non-alternating compositions, ranked by A345168.
A349055 counts multisets w/ an alternating permutation, complement A349050.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s, y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@allnorm[n],whkQ[#]||whkQ[-#]&]],{n,0,6}]
  • PARI
    R(n,k)={my(v=vector(k,i,1), u=vector(n)); for(r=1, n, if(r%2==0, my(s=v[k]); forstep(i=k, 2, -1, v[i] = s - v[i-1]); v[1] = s); for(i=2, k, v[i] += v[i-1]); u[r]=v[k]); u}
    seq(n)= {concat([1], -vector(n,i,1) + 2*sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ) )} \\ Andrew Howroyd, Jan 13 2024

Extensions

a(9)-a(18) from Alois P. Heinz, Dec 10 2021
a(19) onwards from Andrew Howroyd, Jan 13 2024

A348377 Number of non-alternating compositions of n, excluding twins (x,x).

Original entry on oeis.org

0, 0, 0, 1, 3, 9, 19, 45, 98, 208, 436, 906, 1861, 3803, 7731, 15659, 31628, 63747, 128257, 257722, 517338, 1037652, 2079983, 4167325, 8346203, 16710572, 33449694, 66944254, 133959020, 268028868, 536231902, 1072737537, 2145905284, 4292486690, 8586035992
Offset: 0

Views

Author

Gus Wiseman, Oct 26 2021

Keywords

Comments

First differs from A348382 at a(6) = 19, A348382(6) = 17. The two non-alternating non-twin compositions of 6 that are not an anti-run are (1,2,3) and (3,2,1).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The a(3) = 1 through a(6) = 19 compositions:
  (1,1,1)  (1,1,2)    (1,1,3)      (1,1,4)
           (2,1,1)    (1,2,2)      (1,2,3)
           (1,1,1,1)  (2,2,1)      (2,2,2)
                      (3,1,1)      (3,2,1)
                      (1,1,1,2)    (4,1,1)
                      (1,1,2,1)    (1,1,1,3)
                      (1,2,1,1)    (1,1,2,2)
                      (2,1,1,1)    (1,1,3,1)
                      (1,1,1,1,1)  (1,2,2,1)
                                   (1,3,1,1)
                                   (2,1,1,2)
                                   (2,2,1,1)
                                   (3,1,1,1)
                                   (1,1,1,1,2)
                                   (1,1,1,2,1)
                                   (1,1,2,1,1)
                                   (1,2,1,1,1)
                                   (2,1,1,1,1)
                                   (1,1,1,1,1,1)
		

Crossrefs

The version for patterns is A000670(n) - A344605(n).
Non-twin compositions are counted by A051049.
The complement is counted by A344604.
An unordered version is A344654.
The complement is ranked by A345167 \/ A007582.
These compositions are ranked by A345168 \ A007582.
Including twins gives A345192, complement A025047.
The version for factorizations is A347706, or A348380 with twins.
The non-anti-run case is A348382.
A001250 counts alternating permutations.
A011782 counts compositions, strict A032020.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A261983 counts non-anti-run compositions, complement A003242.
A325535 counts inseparable partitions, ranked by A335448.
A344614 counts compositions avoiding (1,2,3) and (3,2,1) adjacent.
A345165 = partitions with no alternating permutations, ranked by A345171.
A345170 = partitions with an alternating permutation, ranked by A345172.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]],{n,0,15}]

Formula

For n > 0, a(n) = A345192(n) - 1 if n is even; otherwise A345192(n).

Extensions

a(26) onwards from Andrew Howroyd, Jan 31 2024

A344649 Triangle read by rows where T(n,k) is the number of strict integer partitions of 2n with reverse-alternating sum 2k.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 3, 2, 1, 0, 1, 0, 1, 3, 3, 2, 1, 0, 1, 0, 1, 4, 4, 3, 2, 1, 0, 1, 0, 1, 5, 6, 4, 3, 2, 1, 0, 1, 0, 1, 7, 7, 6, 4, 3, 2, 1, 0, 1, 0, 1, 8, 10, 8, 6, 4, 3, 2, 1, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. This is equal to (-1)^(m-1) times the number of odd parts in the conjugate partition, where m is the number of parts. So T(n,k) is the number of strict integer partitions of 2n into an odd number of parts whose conjugate has exactly 2k odd parts.
Also the number of reversed strict integer partitions of 2n with alternating sum 2k.

Examples

			Triangle begins:
   1
   0   1
   0   0   1
   0   1   0   1
   0   1   1   0   1
   0   1   2   1   0   1
   0   1   3   2   1   0   1
   0   1   3   3   2   1   0   1
   0   1   4   4   3   2   1   0   1
   0   1   5   6   4   3   2   1   0   1
   0   1   7   7   6   4   3   2   1   0   1
   0   1   8  10   8   6   4   3   2   1   0   1
   0   1  10  13  12   8   6   4   3   2   1   0   1
   0   1  11  18  15  12   8   6   4   3   2   1   0   1
   0   1  14  22  21  16  12   8   6   4   3   2   1   0   1
   0   1  15  29  27  23  16  12   8   6   4   3   2   1   0   1
Row n = 8 counts the following partitions (empty columns indicated by dots):
  .  (8,7,1)  (7,6,3)      (7,5,4)   (9,4,3)   (11,3,2)  (13,2,1)  .  (16)
              (8,6,2)      (8,5,3)   (10,4,2)  (12,3,1)
              (9,6,1)      (9,5,2)   (11,4,1)
              (6,4,3,2,1)  (10,5,1)
Row n = 9 counts the following partitions (empty columns indicated by dots, A..I = 10..18):
  .  981   873     765     954   B43   D32   F21   .  I
           972     864     A53   C42   E31
           A71     963     B52   D41
           65421   A62     C51
           75321   B61
                   84321
		

Crossrefs

The non-reversed version is A152146.
The non-reversed non-strict version is A239830.
Column k = 2 is A343941.
The non-strict version is A344610.
Row sums are A344650.
Right half of even-indexed rows of A344739.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A067659 counts strict partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions of 2n with reverse-alternating sum 2.
A124754 gives alternating sum of standard compositions (reverse: A344618).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344604 counts wiggly compositions with twins.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A344741 counts partitions of 2n with reverse-alternating sum -2.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&sats[#]==k&]],{n,0,30,2},{k,0,n,2}]

A348614 Numbers k such that the k-th composition in standard order has sum equal to twice its alternating sum.

Original entry on oeis.org

0, 9, 11, 14, 130, 133, 135, 138, 141, 143, 148, 153, 155, 158, 168, 177, 179, 182, 188, 208, 225, 227, 230, 236, 248, 2052, 2057, 2059, 2062, 2066, 2069, 2071, 2074, 2077, 2079, 2084, 2089, 2091, 2094, 2098, 2101, 2103, 2106, 2109, 2111, 2120, 2129, 2131
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The terms together with their binary indices begin:
    0: ()
    9: (3,1)
   11: (2,1,1)
   14: (1,1,2)
  130: (6,2)
  133: (5,2,1)
  135: (5,1,1,1)
  138: (4,2,2)
  141: (4,1,2,1)
  143: (4,1,1,1,1)
  148: (3,2,3)
  153: (3,1,3,1)
  155: (3,1,2,1,1)
  158: (3,1,1,1,2)
		

Crossrefs

The unordered case (partitions) is counted by A000712, reverse A006330.
These compositions are counted by A262977.
Except for 0, a subset of A345917 (which is itself a subset of A345913).
A000346 = even-length compositions with alt sum != 0, complement A001700.
A011782 counts compositions.
A025047 counts wiggly compositions, ranked by A345167.
A034871 counts compositions of 2n with alternating sum 2k.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A116406 counts compositions with alternating sum >=0, ranked by A345913.
A138364 counts compositions with alternating sum 0, ranked by A344619.
A345197 counts compositions by length and alternating sum.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],Total[stc[#]]==2*ats[stc[#]]&]
Previous Showing 31-40 of 50 results. Next