cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 51 results. Next

A345961 Numbers whose prime indices have reverse-alternating sum 2.

Original entry on oeis.org

3, 10, 12, 21, 27, 30, 40, 48, 55, 70, 75, 84, 90, 91, 108, 120, 147, 154, 160, 187, 189, 192, 210, 220, 243, 247, 250, 270, 280, 286, 300, 336, 360, 363, 364, 391, 432, 442, 462, 480, 490, 495, 507, 525, 551, 588, 616, 630, 640, 646, 675, 713, 748, 750, 756
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. Of course, the reverse-alternating sum of prime indices is also the alternating sum of reversed prime indices.
Also numbers with exactly two odd conjugate prime indices. The restriction to odd omega is A345960, and the restriction to even omega is A345962.

Examples

			The initial terms and their prime indices:
    3: {2}
   10: {1,3}
   12: {1,1,2}
   21: {2,4}
   27: {2,2,2}
   30: {1,2,3}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   55: {3,5}
   70: {1,3,4}
   75: {2,3,3}
   84: {1,1,2,4}
   90: {1,2,2,3}
   91: {4,6}
  108: {1,1,2,2,2}
  120: {1,1,1,2,3}
		

Crossrefs

Below we use k to indicate reverse-alternating sum.
The k > 0 version is A000037.
These multisets are counted by A000097.
The k = 0 version is A000290, counted by A000041.
These partitions are counted by A120452 (negative: A344741).
These are the positions of 2's in A344616.
The k = -1 version is A345912.
The k = 1 version is A345958.
The unreversed version is A345960 (negative: A345962).
A000070 counts partitions with alternating sum 1.
A002054/A345924/A345923 count/rank compositions with alternating sum -2.
A027187 counts partitions with reverse-alternating sum <= 0.
A056239 adds up prime indices, row sums of A112798.
A088218/A345925/A345922 count/rank compositions with alternating sum 2.
A088218 also counts compositions with alternating sum 0, ranked by A344619.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices.
A325534 and A325535 count separable and inseparable partitions.
A344606 counts alternating permutations of prime indices.
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[100],sats[primeMS[#]]==2&]

A363626 Number of integer compositions of n with weighted alternating sum 0.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 2, 5, 7, 8, 14, 38, 64, 87, 174, 373, 649, 1069, 2051, 4091, 7453, 13276, 25260, 48990, 91378, 168890, 321661, 618323, 1169126, 2203649, 4211163, 8085240, 15421171, 29390131, 56382040, 108443047, 208077560, 399310778
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2023

Keywords

Comments

We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) * i * y_i.

Examples

			The a(3) = 1 through a(10) = 14 compositions:
  (21)  (121)  .  (42)    (331)     (242)      (63)       (541)
                  (3111)  (1132)    (1331)     (153)      (2143)
                          (2221)    (11132)    (4122)     (3232)
                          (21121)   (12221)    (5211)     (4321)
                          (112111)  (23111)    (13122)    (15112)
                                    (121121)   (14211)    (31231)
                                    (1112111)  (411111)   (42121)
                                               (1311111)  (114112)
                                                          (212122)
                                                          (213211)
                                                          (311221)
                                                          (322111)
                                                          (3111121)
                                                          (21211111)
		

Crossrefs

The unweighted version is A138364, ranks A344619.
The version for partitions is A363532, ranks A363621.
A000041 counts integer partitions.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, reverse A318283.
A316524 gives alternating sum of prime indices, reverse A344616.
A363619 gives weighted alternating sum of prime indices, reverse A363620.
A363624 gives weighted alternating sum of Heinz partition, reverse A363625.

Programs

  • Mathematica
    altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]],{k,1,Length[y]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],altwtsum[#]==0&]],{n,0,10}]

Extensions

Terms a(22) onward from Max Alekseyev, Sep 05 2023

A177787 Number of paths from (0,0) to (n+2,n) using only up and right steps and avoiding two or more consecutive moves up or three or more consecutive moves right.

Original entry on oeis.org

2, 5, 10, 18, 30, 47, 70, 100, 138, 185, 242, 310, 390, 483, 590, 712, 850, 1005, 1178, 1370, 1582, 1815, 2070, 2348, 2650, 2977, 3330, 3710, 4118, 4555, 5022, 5520, 6050, 6613, 7210, 7842, 8510, 9215, 9958, 10740, 11562, 12425, 13330, 14278, 15270
Offset: 1

Views

Author

Shanzhen Gao, May 13 2010

Keywords

Comments

Strings of length 2n+2 over the alphabet {U, R} with n Rs and avoiding UU or RRR as substrings.
Also number of binary words with 3 1's and n 0's that do not contain the substring 101. a(2) = 5: 00111, 10011, 11001, 11100, 01110. - Alois P. Heinz, Jul 18 2013
Let (b(n)) be the p-INVERT of A010892 using p(S) = 1 - S^2; then b(n) = a(n+1) for n >= 0. See A292301. - Clark Kimberling, Sep 30 2017
From Gus Wiseman, Oct 13 2022: (Start)
Also the number of integer compositions of n+3 with half-alternating sum n-1, where we define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ... For example, the a(1) = 2 through a(4) = 10 compositions are:
(112) (122) (132)
(1111) (212) (222)
(1211) (312)
(2111) (1311)
(11111) (2211)
(3111)
(11112)
(12111)
(21111)
(111111)
A001700/A138364 = compositions with alternating sum 0, ranked by A344619.
A357621 = half-alternating sum of standard compositions, reverse A357622.
A357641 = compositions with half-alternating sum 0, ranked by A357625.
(End)

Crossrefs

First differences of A227161. - Alois P. Heinz, Jul 18 2013

Programs

  • Magma
    I:=[2, 5, 10, 18]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jul 04 2012
  • Maple
    a:= n-> n/6*(11+n^2): seq(a(n), n=1..40);
  • Mathematica
    CoefficientList[Series[(2-3*x+2*x^2)/(x-1)^4,{x,0,50}],x] (* Vincenzo Librandi, Jul 04 2012 *)

Formula

a(n) = 1/6 * n (11 + n^2).
From R. J. Mathar, May 22 2010: (Start)
a(n) = A140226(n)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x*(2-3*x+2*x^2)/(x-1)^4. (End)

Extensions

More terms from R. J. Mathar, May 22 2010

A349159 Numbers whose sum of prime indices is twice their alternating sum.

Original entry on oeis.org

1, 12, 63, 66, 112, 190, 255, 325, 408, 434, 468, 609, 805, 832, 931, 946, 1160, 1242, 1353, 1380, 1534, 1539, 1900, 2035, 2067, 2208, 2296, 2387, 2414, 2736, 3055, 3108, 3154, 3330, 3417, 3509, 3913, 4185, 4340, 4503, 4646, 4650, 4664, 4864, 5185, 5684, 5863
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are also Heinz numbers of partitions whose sum is twice their alternating sum.

Examples

			The terms and their prime indices begin:
     1: ()
    12: (2,1,1)
    63: (4,2,2)
    66: (5,2,1)
   112: (4,1,1,1,1)
   190: (8,3,1)
   255: (7,3,2)
   325: (6,3,3)
   408: (7,2,1,1,1)
   434: (11,4,1)
   468: (6,2,2,1,1)
   609: (10,4,2)
   805: (9,4,3)
   832: (6,1,1,1,1,1,1)
   931: (8,4,4)
   946: (14,5,1)
  1160: (10,3,1,1,1)
		

Crossrefs

These partitions are counted by A000712 up to 0's.
An ordered version is A348614, negative A349154.
The negative version is A348617.
The reverse version is A349160, counted by A006330 up to 0's.
A025047 counts alternating or wiggly compositions, complement A345192.
A027193 counts partitions with rev-alt sum > 0, ranked by A026424.
A034871, A097805, and A345197 count compositions by alternating sum.
A035363 = partitions with alt sum 0, ranked by A066207, complement A086543.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A103919 counts partitions by alternating sum, reverse A344612.
A116406 counts compositions with alternating sum >= 0, ranked by A345913.
A138364 counts compositions with alternating sum 0, ranked by A344619.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344607 counts partitions with rev-alt sum >= 0, ranked by A344609.
A346697 adds up odd-indexed prime indices.
A346698 adds up even-indexed prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[1000],Total[primeMS[#]]==2*ats[primeMS[#]]&]

Formula

A056239(a(n)) = 2*A316524(a(n)).
A346697(a(n)) = 3*A346698(a(n)).

A345907 Triangle giving the main antidiagonals of the matrices counting integer compositions by length and alternating sum (A345197).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 0, 4, 3, 1, 1, 0, 0, 3, 6, 4, 1, 1, 0, 0, 6, 9, 8, 5, 1, 1, 0, 0, 0, 18, 18, 10, 6, 1, 1, 0, 0, 0, 10, 36, 30, 12, 7, 1, 1, 0, 0, 0, 20, 40, 60, 45, 14, 8, 1, 1, 0, 0, 0, 0, 80, 100, 90, 63, 16, 9, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2021

Keywords

Comments

The matrices (A345197) count the integer compositions of n of length k with alternating sum i, where 1 <= k <= n, and i ranges from -n + 2 to n in steps of 2. Here, the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
Problem: What are the column sums? They appear to match A239201, but it is not clear why.

Examples

			Triangle begins:
   1
   1   1
   0   1   1
   0   1   1   1
   0   2   2   1   1
   0   0   4   3   1   1
   0   0   3   6   4   1   1
   0   0   6   9   8   5   1   1
   0   0   0  18  18  10   6   1   1
   0   0   0  10  36  30  12   7   1   1
   0   0   0  20  40  60  45  14   8   1   1
   0   0   0   0  80 100  90  63  16   9   1   1
   0   0   0   0  35 200 200 126  84  18  10   1   1
   0   0   0   0  70 175 400 350 168 108  20  11   1   1
   0   0   0   0   0 350 525 700 560 216 135  22  12   1   1
		

Crossrefs

Row sums are A163493.
Rows are the antidiagonals of the matrices given by A345197.
The main diagonals of A345197 are A346632, with sums A345908.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
Other diagonals are A008277 of A318393 and A055884 of A320808.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{n-k}],k==(n+ats[#])/2-1&]],{k,0,n-1}],{n,0,15}]

A345927 Alternating sum of the binary expansion of n (row n of A030190). Replace 2^k with (-1)^(A070939(n)-k) in the binary expansion of n (compare to the definition of A065359).

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 0, 1, 1, 0, 2, 1, 0, -1, 1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, -1, 0, 1, 2, 0, 1, 1, 0, 2, 1, 0, -1, 1, 0, 2, 1, 3, 2, 1, 0, 2, 1, 0, -1, 1, 0, -1, -2, 0, -1, 1, 0, 2, 1, 0, -1, 1, 0, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, -1, 0, 1, 2, 0, 1, 2, 3, 1, 2
Offset: 0

Views

Author

Gus Wiseman, Jul 14 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The binary expansion of 53 is (1,1,0,1,0,1), so a(53) = 1 - 1 + 0 - 1 + 0 - 1 = -2.
		

Crossrefs

Binary expansions of each nonnegative integer are the rows of A030190.
The positions of 0's are A039004.
The version for prime factors is A071321 (reverse: A071322).
Positions of first appearances are A086893.
The version for standard compositions is A124754 (reverse: A344618).
The version for prime multiplicities is A316523.
The version for prime indices is A316524 (reverse: A344616).
A003714 lists numbers with no successive binary indices.
A070939 gives the length of an integer's binary expansion.
A103919 counts partitions by sum and alternating sum.
A328594 lists numbers whose binary expansion is aperiodic.
A328595 lists numbers whose reversed binary expansion is a necklace.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[ats[IntegerDigits[n,2]],{n,0,100}]
  • PARI
    a(n) = subst(Pol(Vecrev(binary(n))), x, -1); \\ Michel Marcus, Jul 19 2021
    
  • Python
    def a(n): return sum((-1)**k for k, bi in enumerate(bin(n)[2:]) if bi=='1')
    print([a(n) for n in range(84)]) # Michael S. Branicky, Jul 19 2021

Formula

a(n) = (-1)^(A070939(n)-1)*A065359(n).

A349155 Numbers k such that the k-th composition in standard order has sum equal to negative twice its reverse-alternating sum.

Original entry on oeis.org

0, 9, 130, 135, 141, 153, 177, 193, 225, 2052, 2059, 2062, 2069, 2074, 2079, 2089, 2098, 2103, 2109, 2129, 2146, 2151, 2157, 2169, 2209, 2242, 2247, 2253, 2265, 2289, 2369, 2434, 2439, 2445, 2457, 2481, 2529, 2561, 2689, 2818, 2823, 2829, 2841, 2865, 2913
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.

Examples

			The terms and corresponding compositions begin:
     0: ()
     9: (3,1)
   130: (6,2)
   135: (5,1,1,1)
   141: (4,1,2,1)
   153: (3,1,3,1)
   177: (2,1,4,1)
   193: (1,6,1)
   225: (1,1,5,1)
  2052: (9,3)
  2059: (8,2,1,1)
  2062: (8,1,1,2)
  2069: (7,2,2,1)
  2074: (7,1,2,2)
  2079: (7,1,1,1,1,1)
  2089: (6,2,3,1)
  2098: (6,1,3,2)
  2103: (6,1,2,1,1,1)
		

Crossrefs

These compositions are counted by A224274 up to 0's.
An unordered version is A348617, counted by A001523 up to 0's.
The positive version is A349153, unreversed A348614.
The unreversed version is A349154.
Positive unordered unreversed: A349159, counted by A000712 up to 0's.
A positive unordered version is A349160, counted by A006330 up to 0's.
A003242 counts Carlitz compositions.
A011782 counts compositions.
A025047 counts alternating or wiggly compositions, complement A345192.
A034871, A097805, and A345197 count compositions by alternating sum.
A103919 counts partitions by alternating sum, reverse A344612.
A116406 counts compositions with alternating sum >=0, ranked by A345913.
A138364 counts compositions with alternating sum 0, ranked by A344619.
Statistics of standard compositions:
- The compositions themselves are the rows of A066099.
- Number of parts is given by A000120, distinct A334028.
- Sum and product of parts are given by A070939 and A124758.
- Maximum and minimum parts are given by A333766 and A333768.
- Heinz number is given by A333219.
Classes of standard compositions:
- Partitions and strict partitions are ranked by A114994 and A333256.
- Multisets and sets are ranked by A225620 and A333255.
- Strict and constant compositions are ranked by A233564 and A272919.
- Carlitz compositions are ranked by A333489, complement A348612.
- Alternating compositions are ranked by A345167, complement A345168.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[ Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,1000],Total[stc[#]]==-2*sats[stc[#]]&]

A348617 Numbers whose sum of prime indices is twice their negated alternating sum.

Original entry on oeis.org

1, 10, 39, 88, 115, 228, 259, 306, 517, 544, 620, 783, 793, 870, 1150, 1204, 1241, 1392, 1656, 1691, 1722, 1845, 2369, 2590, 2596, 2775, 2944, 3038, 3277, 3280, 3339, 3498, 3692, 3996, 4247, 4440, 4935, 5022, 5170, 5226, 5587, 5644, 5875, 5936, 6200, 6321
Offset: 1

Views

Author

Gus Wiseman, Nov 26 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are also Heinz numbers of partitions whose sum is twice their negated alternating sum.

Examples

			The terms and their prime indices begin:
     1: ()
    10: (3,1)
    39: (6,2)
    88: (5,1,1,1)
   115: (9,3)
   228: (8,2,1,1)
   259: (12,4)
   306: (7,2,2,1)
   517: (15,5)
   544: (7,1,1,1,1,1)
   620: (11,3,1,1)
   783: (10,2,2,2)
   793: (18,6)
   870: (10,3,2,1)
  1150: (9,3,3,1)
  1204: (14,4,1,1)
  1241: (21,7)
  1392: (10,2,1,1,1,1)
  1656: (9,2,2,1,1,1)
  1691: (24,8)
		

Crossrefs

These partitions are counted by A001523 up to 0's.
An ordered version is A349154, nonnegative A348614, reverse A349155.
The nonnegative version is A349159, counted by A000712 up to 0's.
The reverse nonnegative version is A349160, counted by A006330 up to 0's.
A027193 counts partitions with rev-alt sum > 0, ranked by A026424.
A034871, A097805, A345197 count compositions by alternating sum.
A035363 = partitions with alt sum 0, ranked by A066207, complement A086543.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A103919 counts partitions by alternating sum, reverse A344612.
A344607 counts partitions with rev-alt sum >= 0, ranked by A344609.
A346697 adds up odd-indexed prime indices.
A346698 adds up even-indexed prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[1000],Total[primeMS[#]]==-2*ats[primeMS[#]]&]

Formula

A056239(a(n)) = -2*A316524(a(n)).
A346698(a(n)) = 3*A346697(a(n)).

A349154 Numbers k such that the k-th composition in standard order has sum equal to negative twice its alternating sum.

Original entry on oeis.org

0, 12, 160, 193, 195, 198, 204, 216, 240, 2304, 2561, 2563, 2566, 2572, 2584, 2608, 2656, 2752, 2944, 3074, 3077, 3079, 3082, 3085, 3087, 3092, 3097, 3099, 3102, 3112, 3121, 3123, 3126, 3132, 3152, 3169, 3171, 3174, 3180, 3192, 3232, 3265, 3267, 3270, 3276
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The terms and corresponding compositions begin:
       0: ()
      12: (1,3)
     160: (2,6)
     193: (1,6,1)
     195: (1,5,1,1)
     198: (1,4,1,2)
     204: (1,3,1,3)
     216: (1,2,1,4)
     240: (1,1,1,5)
    2304: (3,9)
    2561: (2,9,1)
    2563: (2,8,1,1)
    2566: (2,7,1,2)
    2572: (2,6,1,3)
    2584: (2,5,1,4)
		

Crossrefs

These compositions are counted by A224274 up to 0's.
Except for 0, a subset of A345919.
The positive version is A348614, reverse A349153.
An unordered version is A348617, counted by A001523.
The reverse version is A349155.
A positive unordered version is A349159, counted by A000712 up to 0's.
A000346 = even-length compositions with alt sum != 0, complement A001700.
A003242 counts Carlitz compositions.
A011782 counts compositions.
A025047 counts alternating or wiggly compositions, complement A345192.
A034871, A097805, and A345197 count compositions by alternating sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A116406 counts compositions with alternating sum >=0, ranked by A345913.
A138364 counts compositions with alternating sum 0, ranked by A344619.
Statistics of standard compositions:
- The compositions themselves are the rows of A066099.
- Number of parts is given by A000120, distinct A334028.
- Sum and product of parts are given by A070939 and A124758.
- Maximum and minimum parts are given by A333766 and A333768.
Classes of standard compositions:
- Partitions and strict partitions are ranked by A114994 and A333256.
- Multisets and sets are ranked by A225620 and A333255.
- Strict and constant compositions are ranked by A233564 and A272919.
- Carlitz compositions are ranked by A333489, complement A348612.
- Necklaces are ranked by A065609, dual A333764, reversed A333943.
- Alternating compositions are ranked by A345167, complement A345168.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],Total[stc[#]]==-2*ats[stc[#]]&]

A346632 Triangle read by rows giving the main diagonals of the matrices counting integer compositions by length and alternating sum (A345197).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 2, 3, 0, 0, 0, 1, 2, 6, 6, 0, 0, 0, 1, 2, 9, 12, 0, 0, 0, 0, 1, 2, 12, 18, 10, 0, 0, 0, 0, 1, 2, 15, 24, 30, 20, 0, 0, 0, 0, 1, 2, 18, 30, 60, 60, 0, 0, 0, 0, 0, 1, 2, 21, 36, 100, 120, 35, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2021

Keywords

Comments

The matrices (A345197) count the integer compositions of n of length k with alternating sum i, where 1 <= k <= n, and i ranges from -n + 2 to n in steps of 2. The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			Triangle begins:
   1
   0   0
   0   1   0
   0   1   2   0
   0   1   2   0   0
   0   1   2   3   0   0
   0   1   2   6   6   0   0
   0   1   2   9  12   0   0   0
   0   1   2  12  18  10   0   0   0
   0   1   2  15  24  30  20   0   0   0
   0   1   2  18  30  60  60   0   0   0   0
   0   1   2  21  36 100 120  35   0   0   0   0
   0   1   2  24  42 150 200 140  70   0   0   0   0
   0   1   2  27  48 210 300 350 280   0   0   0   0   0
   0   1   2  30  54 280 420 700 700 126   0   0   0   0   0
		

Crossrefs

The first nonzero element in each column appears to be A001405.
These are the diagonals of the matrices given by A345197.
Antidiagonals of the same matrices are A345907.
Row sums are A345908.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
Other diagonals are A008277 of A318393 and A055884 of A320808.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],k==(n+ats[#])/2&]],{k,n}],{n,0,15}]
Previous Showing 41-50 of 51 results. Next