cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A348733 a(n) = gcd(A003959(n), A034448(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and A034448 (usigma) is multiplicative with a(p^e) = (p^e)+1.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 9, 2, 18, 12, 4, 14, 24, 24, 1, 18, 6, 20, 6, 32, 36, 24, 36, 2, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 2, 38, 60, 56, 54, 42, 96, 44, 12, 12, 72, 48, 4, 2, 6, 72, 14, 54, 12, 72, 72, 80, 90, 60, 24, 62, 96, 16, 1, 84, 144, 68, 18, 96, 144, 72, 18, 74, 114, 8, 20, 96, 168, 80, 6, 2, 126, 84, 32
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 1444 = 2^2 * 19^2, where a(1444) = 10 != 1*2 = a(4)*a(361). See A348740 for the list of such positions.

Crossrefs

Cf. also A344695, A348047, A348503, A348946 for similar, almost multiplicative sequences.

Programs

  • Mathematica
    f1[p_, e_] := (p + 1)^e; f2[p_, e_] := p^e + 1; a[1] = 1; a[n_] := GCD[Times @@ f1 @@@ (f = FactorInteger[n]), Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A348733(n) = gcd(A003959(n), A034448(n));

Formula

a(n) = gcd(A003959(n), A034448(n)).
a(n) = gcd(A003959(n), A348732(n)) = gcd(A034448(n), A348732(n)).
a(n) = A003959(n) / A348734(n) = A034448(n) / A348735(n).

A348047 a(n) = gcd(sigma(n), A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 8, 8, 30, 72, 32, 9, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 24, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 3, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84, 32
Offset: 1

Views

Author

Antti Karttunen, Oct 21 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 196 = 4*49, where a(196) = 3, although a(4) = 1 and a(49) = 4.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[1] = 1; a[n_] := GCD[Times @@ f @@@ FactorInteger[n], DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Oct 21 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348047(n) = gcd(sigma(n), A003959(n));

Formula

a(n) = gcd(A000203(n), A003959(n)).
a(n) = gcd(A000203(n), A348029(n)) = gcd(A003959(n), A348029(n)).
a(n) = A000203(n)/ A348048(n) = A003959(n) / A348049(n).

A348503 a(n) = gcd(sigma(n), usigma(n)), where sigma is the sum of divisors function, A000203, and usigma is the unitary sigma, A034448.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 12, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 15, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84, 32
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 72 = 8*9, where a(72) = 15 != 3*1 = a(8)*a(9).

Crossrefs

Differs from A344695 for the first time at n=72, where a(72) = 15, while A344695(72) = 3.
Differs from A348047 for the first time at n=27, where a(27) = 4, while A348047(27) = 8.

Programs

  • Mathematica
    f1[p_, e_] := p^e + 1; f2[p_, e_] := (p^(e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := GCD[Times @@ f1 @@@ (fct = FactorInteger[n]), Times @@ f2 @@@ fct]; Array[a, 100] (* Amiram Eldar, Oct 29 2021 *)
  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A348503(n) = gcd(sigma(n), A034448(n));

Formula

a(n) = gcd(A000203(n), A034448(n)).
a(n) = gcd(A000203(n), A048146(n)) = gcd(A034448(n), A048146(n)).
a(n) = A000203(n) / A348504(n) = A034448(n) / A348505(n).

A348946 a(n) = gcd(sigma(n), A348944(n)), where A348944 is the arithmetic mean of A003959 and A034448, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 3, 13, 18, 12, 28, 14, 24, 24, 1, 18, 39, 20, 42, 32, 36, 24, 12, 31, 42, 2, 56, 30, 72, 32, 3, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 84, 78, 72, 48, 4, 57, 93, 72, 98, 54, 6, 72, 24, 80, 90, 60, 168, 62, 96, 104, 1, 84, 144, 68, 126, 96, 144, 72, 3, 74, 114, 124, 140, 96, 168, 80, 6, 1, 126
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 36 = 2^2 * 3^2, where a(36) = 1 <> 91 = 7*13 = a(4)*a(9).

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := (p + 1)^e; f3[p_, e_] := p^e + 1; a[1] = 1; a[n_] := GCD[Times @@ f1 @@@ (f = FactorInteger[n]), (Times @@ f2 @@@ f + Times @@ f3 @@@ f)/2]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A348946(n) = gcd(sigma(n), ((1/2)*(A003959(n)+A034448(n))));

Formula

a(n) = gcd(A000203(n), A348944(n)).
a(n) = gcd(A000203(n), A348945(n)) = gcd(A348944(n), A348945(n));
a(n) = A348944(n) / A348947(n) = A000203(n) / A348948(n).

A367991 The sum of the divisors of the squarefree part of n.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 12, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72
Offset: 1

Views

Author

Amiram Eldar, Dec 07 2023

Keywords

Comments

First differs from A348503 at n = 72 and from A344695 at n = 108.
The sum of the infinitary divisors (A077609) of n that are squarefree (A005117). - Amiram Eldar, Jun 03 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1]+1, 1));}

Formula

Multiplicative with a(p^e) = p + 1 if e is odd and 1 otherwise.
a(n) = A000203(A007913(n)) = A048250(A007913(n)).
a(n) = A048250(n)/A367990(n).
a(n) >= 1, with equality if and only if n is a square (A000290).
a(n) <= A000203(n), with equality if and only if n is squarefree (A005117).
Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^s).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4)/zeta(3) = 0.900392677639... .

A344703 Numbers k for which sigma(k^2) and psi(k^2) share a factor, where sigma is the sum of divisors, A000203, and psi is the Dedekind psi function, A001615.

Original entry on oeis.org

14, 21, 26, 28, 35, 38, 39, 42, 52, 56, 57, 62, 63, 65, 70, 74, 76, 77, 78, 82, 84, 86, 93, 95, 98, 99, 104, 105, 111, 112, 114, 117, 119, 122, 124, 126, 129, 130, 133, 134, 140, 143, 146, 148, 152, 154, 155, 156, 158, 161, 166, 168, 171, 172, 175, 182, 183, 185, 186, 189, 190, 194, 195, 198, 201, 203, 206, 208, 209
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, May 27 2021

Keywords

Comments

Numbers k for which A344695(k^2) > 1.
It can be shown that sigma(m) and psi(m) share a factor if m is nonsquare. (See A344695 for more detail.) So here we consider only square numbers, m = k^2.
For prime p, sigma(p^2) and psi(p^2) are coprime, since sigma(p^2) = p^2 + p + 1 = psi(p^2) + 1. So all terms are composite. We can say more, since for prime p and positive integer e, psi(p^(2*e)) = p^(2*e-1) * (p+1), whereas sigma(p^(2*e)) can be shown to be congruent to 1 modulo p and to 1 modulo p+1, so shares no factors with p^(2*e-1) * (p+1). So all terms are divisible by more than one prime.
If k is in the sequence, m*k is also present for any positive integer m coprime to k.

Examples

			Sigma (A000203) and the Dedekind psi function (A001615) are both multiplicative, so we gain insight by showing the values of these functions using their multiplicative properties:-
sigma(14^2) = sigma(2^2) * sigma(7^2) = 7 * 57 = 7 * (3*19).
psi(14^2) = psi(2^2) * psi(7^2) = 6 * 56 = (2*3) * (2^3*7).
So sigma(14^2) and psi(14^2) share factors 3 and 7, so 14 is in the sequence.
Looking in particular at the shared factor 3, we see it is present in sigma(7^2) and psi(2^2). For prime p, sigma(p^2) and psi(p^2) equate to polynomials in p, so we deduce 3 divides sigma(p^2) for p congruent to 7 modulo 3, and divides psi(p^2) for p congruent to 2 modulo 3. From this we see all products of a prime of the form 3m+1 and a prime of the form 3m+2 are in the sequence; for instance (3*4+1) * (3*1+2) = 13 * 5 = 65.
		

Crossrefs

Subsequences: A344872.

Programs

  • Maple
    filter:= proc(k) local n,F, sig, psi, t;
       n:= k^2;
       F:= map(t -> [t[1],2*t[2]], ifactors(k)[2]);
       sig:= mul((t[1]^(1+t[2])-1)/(t[1]-1),t=F);
       psi:= n*mul(1+1/t[1],t=F);
       igcd(sig,psi) > 1
    end proc:
    select(filter, [$1..300]); # Robert Israel, Jan 06 2024
  • Mathematica
    filter[k_] := Module[{n, F, sig, psi},
       n = k^2;
       F = {#[[1]], 2 #[[2]]}& /@ FactorInteger[k];
       sig = Product[(t[[1]]^(1 + t[[2]]) - 1)/(t[[1]] - 1), {t, F}];
       psi = n*Product[1 + 1/t[[1]], {t, F}];
       GCD[sig, psi] > 1];
    Select[Range[300], filter] // Quiet (* Jean-François Alcover, May 23 2024, after Robert Israel *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A344695(n) = gcd(sigma(n), A001615(n));
    isA344703(n) = (A344695(n^2)>1);

A366796 Lexicographically earliest infinite sequence such that a(i) = a(j) => A366795(i) = A366795(j) for all i, j >= 0.

Original entry on oeis.org

1, 2, 3, 1, 4, 5, 1, 2, 6, 7, 8, 3, 1, 2, 3, 1, 5, 8, 9, 4, 10, 11, 4, 5, 1, 2, 3, 1, 4, 5, 1, 2, 12, 13, 10, 6, 11, 14, 6, 7, 14, 15, 16, 8, 6, 7, 8, 3, 1, 2, 3, 1, 4, 5, 1, 2, 6, 7, 8, 6, 1, 2, 3, 1, 7, 17, 18, 5, 19, 15, 5, 8, 20, 21, 22, 9, 5, 8, 9, 4, 23, 22, 24, 10, 25, 25, 10, 11, 5, 8, 9, 4, 10, 11, 4, 5, 1
Offset: 0

Views

Author

Antti Karttunen, Oct 26 2023

Keywords

Comments

Restricted growth sequence transform of A366795.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A344695(n) = gcd(sigma(n), A001615(n));
    A366795(n) = A344695(A005940(1+n));
    v366796 = rgs_transform(vector(1+up_to,n,A366795(n-1)));
    A366796(n) = v366796[1+n];

A349574 Lexicographically earliest infinite sequence such that a(i) = a(j) => A344696(i) = A344696(j) and A344697(i) = A344697(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 2, 1, 1, 1, 5, 1, 4, 1, 2, 1, 1, 1, 3, 6, 1, 7, 2, 1, 1, 1, 8, 1, 1, 1, 9, 1, 1, 1, 3, 1, 1, 1, 2, 4, 1, 1, 5, 10, 6, 1, 2, 1, 7, 1, 3, 1, 1, 1, 2, 1, 1, 4, 11, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 6, 2, 1, 1, 1, 5, 13, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 2, 1, 1, 1, 8, 1, 10, 4, 14, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2021

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A344696(n), A344697(n)].
For all i, j, A003557(i) = A003557(j) => a(i) = a(j); in other words, this sequence is a function of A003557. This follows because A344696(n) = A344696(A057521(n)), A344697(n) = A344696(A057521(n)), and A057521(n) = A064549(A003557(n)).
Apparently, A081770 gives the positions of 2's, which occur on those n where A344696(n) = 7 and A344697(n) = 6.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    Aux349574(n) = { my(s=sigma(n),u=A001615(n),g=gcd(u,s)); [s/g, u/g]; };
    v349574 = rgs_transform(vector(up_to, n, Aux349574(n)));
    A349574(n) = v349574[n];

Formula

For all n >= 1, a(n) = a(A057521(n)). [See comments]
Previous Showing 11-18 of 18 results.