cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A345164 Number of alternating permutations of the multiset of prime factors of n.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 2, 1, 2, 2, 0, 1, 4, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 4, 1, 2, 1, 0, 2, 4, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 2, 4, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

First differs from A335452 at a(30) = 4, A335452(30) = 6. The anti-runs (2,3,5) and (5,3,2) are not alternating.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutation, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The a(n) alternating permutations of prime indices for n = 180, 210, 300, 420, 900:
  (12132)  (1324)  (13132)  (12143)  (121323)
  (21213)  (1423)  (13231)  (13142)  (132312)
  (21312)  (2143)  (21313)  (13241)  (213132)
  (23121)  (2314)  (23131)  (14132)  (213231)
  (31212)  (2413)  (31213)  (14231)  (231213)
           (3142)  (31312)  (21314)  (231312)
           (3241)           (21413)  (312132)
           (3412)           (23141)  (323121)
           (4132)           (24131)
           (4231)           (31214)
                            (31412)
                            (34121)
                            (41213)
                            (41312)
		

Crossrefs

Counting all permutations gives A008480.
Dominated by A335452 (number of separations of prime factors).
Including twins (x,x) gives A344606.
Positions of zeros are A345171, counted by A345165.
Positions of nonzero terms are A345172.
A000041 counts integer partitions.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A025047 counts alternating or wiggly compositions, also A025048, A025049.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts alternating compositions with twins.
A344654 counts non-twin partitions w/o alternating permutation, rank: A344653.
A344740 counts twins and partitions w/ alternating permutation, rank: A344742.
A345166 counts separable partitions w/o alternating permutation, rank: A345173.
A345170 counts partitions with a alternating permutation.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Permutations[Flatten[ConstantArray@@@FactorInteger[n]]],wigQ]],{n,30}]

A344608 Number of integer partitions of n with reverse-alternating sum < 0.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 3, 7, 7, 14, 15, 27, 29, 49, 54, 86, 96, 146, 165, 242, 275, 392, 449, 623, 716, 973, 1123, 1498, 1732, 2274, 2635, 3411, 3955, 5059, 5871, 7427, 8620, 10801, 12536, 15572, 18065, 22267, 25821, 31602, 36617, 44533, 51560, 62338, 72105, 86716
Offset: 0

Views

Author

Gus Wiseman, May 30 2021

Keywords

Comments

The reverse-alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
Also the number of reversed of integer partitions of n with alternating sum < 0.
No integer partitions have alternating sum < 0, so the non-reversed version is all zeros.
Is this sequence weakly increasing? Note: a(2n + 2) = A236914(n), a(2n) = A344743(n).
A formula for the reverse-alternating sum of a partition is: (-1)^(k-1) times the number of odd parts in the conjugate partition, where k is the number of parts. So a(n) is the number of integer partitions of n of even length whose conjugate parts are not all odd. Partitions of the latter type are counted by A086543. By conjugation, a(n) is also the number of integer partitions of n of even maximum whose parts are not all odd.

Examples

			The a(3) = 1 through a(9) = 14 partitions:
  (21)  (31)  (32)    (42)    (43)      (53)      (54)
              (41)    (51)    (52)      (62)      (63)
              (2111)  (3111)  (61)      (71)      (72)
                              (2221)    (3221)    (81)
                              (3211)    (4211)    (3222)
                              (4111)    (5111)    (3321)
                              (211111)  (311111)  (4221)
                                                  (4311)
                                                  (5211)
                                                  (6111)
                                                  (222111)
                                                  (321111)
                                                  (411111)
                                                  (21111111)
		

Crossrefs

The opposite version (rev-alt sum > 0) is A027193, ranked by A026424.
The strict case (for n > 2) is A067659 (odd bisection: A344650).
The Heinz numbers of these partitions are A119899 (complement: A344609).
The bisections are A236914 (odd) and A344743 (even).
The ordered version appears to be A294175 (even bisection: A008549).
The complement is counted by A344607 (even bisection: A344611).
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A027187 counts partitions with alternating sum <= 0, ranked by A028260.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A120452 counts partitions with rev-alternating sum 2 (negative: A344741).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A325534/A325535 count separable/inseparable partitions.
A344604 counts wiggly compositions with twins.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344618 gives reverse-alternating sums of standard compositions.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],sats[#]<0&]],{n,0,30}]

A345171 Numbers whose multiset of prime factors has no alternating permutation.

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 80, 81, 88, 96, 104, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 208, 224, 232, 240, 243, 248, 250, 256, 270, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336, 343, 344, 351
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

First differs from A335448 in having 270.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
Also Heinz numbers of integer partitions without a wiggly permutation, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   16: {1,1,1,1}
   24: {1,1,1,2}
   25: {3,3}
   27: {2,2,2}
   32: {1,1,1,1,1}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   49: {4,4}
   54: {1,2,2,2}
   56: {1,1,1,4}
   64: {1,1,1,1,1,1}
   80: {1,1,1,1,3}
   81: {2,2,2,2}
   88: {1,1,1,5}
   96: {1,1,1,1,1,2}
		

Crossrefs

Removing squares of primes A001248 gives A344653, counted by A344654.
A superset of A335448, which is counted by A325535.
Positions of 0's in A345164.
The partitions with these Heinz numbers are counted by A345165.
The complement is A345172, counted by A345170.
The separable case is A345173, counted by A345166.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions, complement A261983.
A025047 counts alternating or wiggly compositions, directed A025048, A025049.
A325534 counts separable partitions, ranked by A335433.
A344606 counts alternating permutations of prime indices with twins.
A344742 ranks twins and partitions with an alternating permutation.
A345192 counts non-alternating compositions.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[100],Select[Permutations[Flatten[ ConstantArray@@@FactorInteger[#]]],wigQ]=={}&]

A347446 Number of integer partitions of n with integer alternating product.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 12, 18, 22, 31, 37, 54, 62, 84, 100, 134, 157, 207, 241, 314, 363, 463, 537, 685, 785, 985, 1138, 1410, 1616, 1996, 2286, 2801, 3201, 3885, 4434, 5363, 6098, 7323, 8329, 9954, 11293, 13430, 15214, 18022, 20383, 24017, 27141, 31893, 35960
Offset: 0

Views

Author

Gus Wiseman, Sep 15 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (41)     (33)      (61)
             (111)  (31)    (221)    (42)      (322)
                    (211)   (311)    (51)      (331)
                    (1111)  (2111)   (222)     (421)
                            (11111)  (411)     (511)
                                     (2211)    (2221)
                                     (3111)    (4111)
                                     (21111)   (22111)
                                     (111111)  (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

Allowing any reverse-alternating product >= 1 gives A344607.
Allowing any alternating product <= 1 gives A119620, reverse A347443.
Allowing any reverse-alternating product < 1 gives A344608.
The multiplicative version (factorizations) is A347437, reverse A347442.
The odd-length case is A347444, ranked by A347453.
The reverse version is A347445, ranked by A347454.
Allowing any alternating product > 1 gives A347448, reverse A347449.
Ranked by A347457.
The even-length case is A347704.
A000041 counts partitions.
A027187 counts partitions of even length.
A027193 counts partitions of odd length.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A347461 counts possible alternating products of partitions.

Programs

  • Mathematica
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[IntegerPartitions[n],IntegerQ[altprod[#]]&]],{n,0,30}]

A345163 Number of integer partitions of n with an alternating permutation covering an initial interval of positive integers.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 11, 12, 16, 20, 23, 27, 34, 41, 48, 57, 68, 80, 94, 110, 130, 153, 175, 203, 239, 275, 317, 365, 420, 483, 553, 632, 720, 825, 938, 1064, 1211, 1370, 1550, 1755, 1982, 2235, 2517, 2830, 3182, 3576, 4006, 4487, 5027, 5619, 6275, 7007, 7812
Offset: 0

Views

Author

Gus Wiseman, Jun 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,3,2,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,3,2,1,2), (2,3,2,1,2,3,2), and (2,1,2,3,2,3,2).
A partition with k parts is alternating if and only every part has a multiplicity no greater than k/2, except either the smallest or largest part may have a multiplicity of (k+1)/2 when k is odd. - Andrew Howroyd, Jan 31 2024

Examples

			The a(3) = 1 through a(12) = 7 partitions:
  21  211  221  321   3211   3221   3321    4321     33221    33321
                2211  22111  22211  32211   33211    43211    43221
                             32111  222111  322111   322211   332211
                                            2221111  332111   432111
                                                     2222111  3222111
                                                     3221111  3321111
                                                              22221111
For example, the partition (3,3,2,1,1,1,1) has the alternating permutations (1,3,1,3,1,2,1), (1,3,1,2,1,3,1), and (1,2,1,3,1,3,1), so is counted under a(12).
		

Crossrefs

Not requiring an alternating permutation gives A000670, ranked by A333217.
The complement in covering partitions is counted by A345162.
Not requiring normality gives A345170, ranked by A345172.
A000041 counts integer partitions.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions, also A025048, A025049.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344605 counts alternating patterns with twins.
A345164 counts alternating permutations of prime indices.
A345165 counts partitions without a alternating permutation, ranked by A345171.
A349051 ranks alternating compositions.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&Select[Permutations[#],wigQ]!={}&]],{n,0,15}]
  • PARI
    \\ See also A345162 for a faster program.
    ok(k,p)={my(S=Set(p)); foreach(S, t, my(c=k+#p-2*(1+#select(x->x==t, p))); if(c<0, return(c==-1 && (t==1||t==k)))); 1}
    a(n)={sum(k=1, (sqrtint(8*n+1)-1)\2, s=0; forpart(p=n-binomial(k+1,2), s+=ok(k,Vec(p)), k); s)} \\ Andrew Howroyd, Jan 31 2024

Formula

The Heinz numbers of these partitions are A333217 /\ A345172.
a(n) = A000009(n) - A345162(n). - Andrew Howroyd, Jan 31 2024

Extensions

a(26) onwards from Andrew Howroyd, Jan 31 2024

A348379 Number of factorizations of n with an alternating permutation.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 6, 1, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 1, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 3, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2021

Keywords

Comments

First differs from A335434 at a(216) = 27, A335434(216) = 28. Also differs from A335434 at a(270) = 19, A335434(270) = 20.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
All of the counted factorizations are separable (A335434).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The a(270) = 19 factorizations:
  (2*3*3*15)  (2*3*45)  (2*135)  (270)
  (2*3*5*9)   (2*5*27)  (3*90)
  (3*3*5*6)   (2*9*15)  (5*54)
              (3*3*30)  (6*45)
              (3*5*18)  (9*30)
              (3*6*15)  (10*27)
              (3*9*10)  (15*18)
              (5*6*9)
		

Crossrefs

Partitions not of this type are counted by A345165, ranked by A345171.
Partitions of this type are counted by A345170, ranked by A345172.
Twins and partitions of this type are counted by A344740, ranked by A344742.
The case with twins is A347050.
The complement is counted by A348380, without twins A347706.
The ordered version is A348610.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[facs[n],Select[Permutations[#],wigQ]!={}&]],{n,100}]

Formula

a(2^n) = A345170(n).

A345166 Number of separable integer partitions of n without an alternating permutation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 5, 6, 7, 10, 14, 18, 21, 27, 35, 42, 54, 65, 78, 95, 117, 140, 170, 202, 239, 286, 343, 401, 476, 562, 660, 775, 910, 1056, 1241, 1444, 1678, 1948, 2267, 2615, 3031, 3502, 4036, 4647, 5356, 6143, 7068, 8101, 9274, 10613, 12151, 13856
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

A partition is separable if it has an anti-run permutation (no adjacent parts equal).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
The partitions counted by this sequence are those with 2m-1 parts with m being the multiplicity of a part which is neither the smallest or largest part. For example, 4322221 is such a partition since the multiplicity of 2 is 4, the total number of parts is 7, and 2 is neither the smallest or largest part. - Andrew Howroyd, Jan 15 2024

Examples

			The a(10) = 1 through a(16) = 6 partitions:
    32221  42221  52221  62221    43331    43332    53332
                         3222211  72221    53331    63331
                                  4222211  82221    92221
                                           3322221  4322221
                                           5222211  6222211
                                                    322222111
		

Crossrefs

Allowing alternating permutations gives A325534, ranked by A335433.
Not requiring separability gives A345165, ranked by A345171.
Permutations of this type are ranked by A345169.
The Heinz numbers of these partitions are A345173.
Numbers with a factorization of this type are A348609.
A000041 counts integer partitions.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions, also A025048, A025049.
A325535 counts inseparable partitions, ranked by A335448.
A344654 counts non-twin partitions w/o alt permutation, rank A344653.
A345162 counts normal partitions w/o alt permutation, complement A345163.
A345170 counts partitions w/ alt permutation, ranked by A345172.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]!={}&&Select[Permutations[#],wigQ]=={}&]],{n,0,15}]

Formula

The Heinz numbers of these partitions are A345173 = A345171 /\ A335433.
a(n) = A325534(n) - A345170(n). - Andrew Howroyd, Jan 15 2024

Extensions

a(26) onwards from Andrew Howroyd, Jan 15 2024

A347706 Number of factorizations of n that are not a twin (x*x) nor have an alternating permutation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2021

Keywords

Comments

First differs from A348381 at a(216) = 4, A348381(216) = 3.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of sets.

Examples

			The a(n) factorizations for n = 96, 192, 2160, 576:
  2*2*2*12      3*4*4*4         3*3*3*80       4*4*4*9
  2*2*2*2*6     2*2*2*24        6*6*6*10       2*2*2*72
  2*2*2*2*2*3   2*2*2*2*12      2*2*2*270      2*2*2*2*36
                2*2*2*2*2*6     2*3*3*3*40     2*2*2*2*4*9
                2*2*2*2*3*4     2*2*2*2*135    2*2*2*2*6*6
                2*2*2*2*2*2*3   2*2*2*2*3*45   2*2*2*2*2*18
                                2*2*2*2*5*27   2*2*2*2*3*12
                                2*2*2*2*9*15   2*2*2*2*2*2*9
                                               2*2*2*2*2*3*6
                                               2*2*2*2*2*2*3*3
		

Crossrefs

Positions of nonzero terms are A046099.
Partitions of this type are counted by A344654, ranked by A344653.
Partitions not of this type are counted by A344740, ranked by A344742.
The complement is counted by A347050, without twins A348379.
The version for compositions is A348377.
The version allowing twins is A348380.
The inseparable case is A348381.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations of sets.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A347438 counts factorizations with alternating product 1, additive A119620.
A348610 counts alternating ordered factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Function[f,Select[Permutations[f],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]=={}]]],{n,100}]

Formula

a(2^n) = A344654(n).

A348613 Number of non-alternating ordered factorizations of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 8, 1, 0, 1, 2, 0, 2, 0, 9, 0, 0, 0, 11, 0, 0, 0, 8, 0, 2, 0, 2, 2, 0, 0, 25, 1, 2, 0, 2, 0, 8, 0, 8, 0, 0, 0, 16, 0, 0, 2, 20, 0, 2, 0, 2, 0, 2, 0, 43, 0, 0, 2, 2, 0, 2, 0, 25, 4, 0, 0, 16, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 03 2021

Keywords

Comments

An ordered factorization of n is a finite sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either.

Examples

			The a(n) ordered factorizations for n = 4, 12, 16, 24, 32, 36:
  2*2   2*2*3   4*4       2*2*6     2*2*8       6*6
        3*2*2   2*2*4     2*3*4     2*4*4       2*2*9
                4*2*2     4*3*2     4*4*2       2*3*6
                2*2*2*2   6*2*2     8*2*2       3*3*4
                          2*2*2*3   2*2*2*4     4*3*3
                          2*2*3*2   2*2*4*2     6*3*2
                          2*3*2*2   2*4*2*2     9*2*2
                          3*2*2*2   4*2*2*2     2*2*3*3
                                    2*2*2*2*2   2*3*3*2
                                                3*2*2*3
                                                3*3*2*2
		

Crossrefs

The complementary additive version is A025047, ranked by A345167.
The additive version is A345192, ranked by A345168, without twins A348377.
The complement is counted by A348610.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A345165 counts partitions without an alternating permutation, ranked by A345171.
A345170 counts partitions with an alternating permutation, ranked by A345172.
A348379 counts factorizations w/ an alternating permutation, with twins A347050.
A348380 counts factorizations w/o an alternating permutation, w/o twins A347706.
A348611 counts anti-run ordered factorizations.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[ordfacs[n],!wigQ[#]&]],{n,100}]

A344742 Numbers whose prime factors have a permutation with no consecutive monotone triple, i.e., no triple (..., x, y, z, ...) such that either x <= y <= z or x >= y >= z.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Gus Wiseman, Jun 12 2021

Keywords

Comments

Differs from A335433 in having all squares of primes (A001248) and lacking 270 etc.
Also Heinz numbers of integer partitions that are either a twin (x,x) or have a wiggly permutation.
(1) The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
(2) A sequence is wiggly if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no wiggly permutations, even though it has anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The sequence of terms together with their prime indices begins:
      1: {}          18: {1,2,2}     36: {1,1,2,2}
      2: {1}         19: {8}         37: {12}
      3: {2}         20: {1,1,3}     38: {1,8}
      4: {1,1}       21: {2,4}       39: {2,6}
      5: {3}         22: {1,5}       41: {13}
      6: {1,2}       23: {9}         42: {1,2,4}
      7: {4}         25: {3,3}       43: {14}
      9: {2,2}       26: {1,6}       44: {1,1,5}
     10: {1,3}       28: {1,1,4}     45: {2,2,3}
     11: {5}         29: {10}        46: {1,9}
     12: {1,1,2}     30: {1,2,3}     47: {15}
     13: {6}         31: {11}        49: {4,4}
     14: {1,4}       33: {2,5}       50: {1,3,3}
     15: {2,3}       34: {1,7}       51: {2,7}
     17: {7}         35: {3,4}       52: {1,1,6}
For example, the prime factors of 120 are (2,2,2,3,5), with the two wiggly permutations (2,3,2,5,2) and (2,5,2,3,2), so 120 is in the sequence.
		

Crossrefs

Positions of nonzero terms in A344606.
The complement is A344653, counted by A344654.
These partitions are counted by A344740.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A001248 lists squares of primes.
A001250 counts wiggly permutations.
A003242 counts anti-run compositions.
A011782 counts compositions.
A025047 counts wiggly compositions (ascend: A025048, descend: A025049).
A056239 adds up prime indices, row sums of A112798.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts wiggly compositions with twins.
A345164 counts wiggly permutations of prime indices.
A345165 counts partitions without a wiggly permutation, ranked by A345171.
A345170 counts partitions with a wiggly permutation, ranked by A345172.
A345192 counts non-wiggly compositions.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Flatten[ConstantArray@@@FactorInteger[#]]],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]!={}&]

Formula

Union of A345172 (wiggly) and A001248 (squares of primes).
Previous Showing 11-20 of 36 results. Next