cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A345172 Numbers whose multiset of prime factors has an alternating permutation.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

First differs from A212167 in containing 72.
First differs from A335433 in lacking 270, corresponding to the partition (3,2,2,2,1).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,3,2,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,3,2,1,2), (2,3,2,1,2,3,2), and (2,1,2,3,2,3,2).
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}          20: {1,1,3}       39: {2,6}
      2: {1}         21: {2,4}         41: {13}
      3: {2}         22: {1,5}         42: {1,2,4}
      5: {3}         23: {9}           43: {14}
      6: {1,2}       26: {1,6}         44: {1,1,5}
      7: {4}         28: {1,1,4}       45: {2,2,3}
     10: {1,3}       29: {10}          46: {1,9}
     11: {5}         30: {1,2,3}       47: {15}
     12: {1,1,2}     31: {11}          50: {1,3,3}
     13: {6}         33: {2,5}         51: {2,7}
     14: {1,4}       34: {1,7}         52: {1,1,6}
     15: {2,3}       35: {3,4}         53: {16}
     17: {7}         36: {1,1,2,2}     55: {3,5}
     18: {1,2,2}     37: {12}          57: {2,8}
     19: {8}         38: {1,8}         58: {1,10}
		

Crossrefs

Including squares of primes A001248 gives A344742, counted by A344740.
This is a subset of A335433, which is counted by A325534.
Positions of nonzero terms in A345164.
The partitions with these Heinz numbers are counted by A345170.
The complement is A345171, which is counted by A345165.
A345173 = A345171 /\ A335433 is counted by A345166.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A025047 counts alternating or wiggly compositions, also A025048, A025049.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts alternating compositions with twins.
A344606 counts alternating permutations of prime indices with twins.
A345192 counts non-alternating compositions.

Programs

  • Mathematica
    wigQ[y_]:=Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1;
    Select[Range[100],Select[Permutations[ Flatten[ConstantArray@@@FactorInteger[#]]],wigQ[#]&]!={}&]

Formula

Complement of A001248 (squares of primes) in A344742.

A344740 Number of integer partitions of n with a permutation that has no consecutive monotone triple, i.e., no triple (..., x, y, z, ...) such that either x <= y <= z or x >= y >= z.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 15, 19, 26, 36, 49, 64, 85, 111, 147, 191, 245, 315, 405, 515, 652, 823, 1036, 1295, 1617, 2011, 2493, 3076, 3788, 4650, 5696, 6952, 8464, 10280, 12461, 15059, 18163, 21858, 26255, 31463, 37642, 44933, 53555, 63704, 75654, 89683, 106163, 125445, 148021
Offset: 0

Views

Author

Gus Wiseman, Jun 12 2021

Keywords

Comments

These partitions are characterized by either being a twin (x,x) or having a wiggly permutation. A sequence is wiggly if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no wiggly permutations, even though it has anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The a(1) = 1 through a(8) = 15 partitions:
  (1)  (2)    (3)    (4)      (5)      (6)        (7)          (8)
       (1,1)  (2,1)  (2,2)    (3,2)    (3,3)      (4,3)        (4,4)
                     (3,1)    (4,1)    (4,2)      (5,2)        (5,3)
                     (2,1,1)  (2,2,1)  (5,1)      (6,1)        (6,2)
                              (3,1,1)  (3,2,1)    (3,2,2)      (7,1)
                                       (4,1,1)    (3,3,1)      (3,3,2)
                                       (2,2,1,1)  (4,2,1)      (4,2,2)
                                                  (5,1,1)      (4,3,1)
                                                  (3,2,1,1)    (5,2,1)
                                                  (2,2,1,1,1)  (6,1,1)
                                                               (3,2,2,1)
                                                               (3,3,1,1)
                                                               (4,2,1,1)
                                                               (2,2,2,1,1)
                                                               (3,2,1,1,1)
For example, the partition (3,2,2,1) has the two wiggly permutations (2,3,1,2) and (2,1,3,2), so is counted under a(8).
		

Crossrefs

The complement is counted by A344654.
The Heinz numbers of these partitions are A344742, complement A344653.
The normal case starts 1, 1, 1, then becomes A345163, complement A345162.
Not counting twins (x,x) gives A345170, ranked by A345172.
A001250 counts wiggly permutations.
A003242 counts anti-run compositions.
A025047 counts wiggly compositions (ascend: A025048, descend: A025049).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts wiggly compositions with twins.
A344605 counts wiggly patterns with twins.
A344606 counts wiggly permutations of prime indices with twins.
A344614 counts compositions with no consecutive strictly monotone triple.
A345164 counts wiggly permutations of prime indices.
A345165 counts partitions without a wiggly permutation, ranked by A345171.
A345192 counts non-wiggly compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]!={}&]],{n,0,15}]

Formula

a(n) = A345170(n) for n odd; a(n) = A345170(n) + 1 for n even.

Extensions

a(26)-a(32) from Robert Price, Jun 22 2021
a(33) onwards from Joseph Likar, Sep 05 2023

A345171 Numbers whose multiset of prime factors has no alternating permutation.

Original entry on oeis.org

4, 8, 9, 16, 24, 25, 27, 32, 40, 48, 49, 54, 56, 64, 80, 81, 88, 96, 104, 112, 121, 125, 128, 135, 136, 144, 152, 160, 162, 169, 176, 184, 189, 192, 208, 224, 232, 240, 243, 248, 250, 256, 270, 272, 288, 289, 296, 297, 304, 320, 324, 328, 336, 343, 344, 351
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

First differs from A335448 in having 270.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
Also Heinz numbers of integer partitions without a wiggly permutation, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   16: {1,1,1,1}
   24: {1,1,1,2}
   25: {3,3}
   27: {2,2,2}
   32: {1,1,1,1,1}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   49: {4,4}
   54: {1,2,2,2}
   56: {1,1,1,4}
   64: {1,1,1,1,1,1}
   80: {1,1,1,1,3}
   81: {2,2,2,2}
   88: {1,1,1,5}
   96: {1,1,1,1,1,2}
		

Crossrefs

Removing squares of primes A001248 gives A344653, counted by A344654.
A superset of A335448, which is counted by A325535.
Positions of 0's in A345164.
The partitions with these Heinz numbers are counted by A345165.
The complement is A345172, counted by A345170.
The separable case is A345173, counted by A345166.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions, complement A261983.
A025047 counts alternating or wiggly compositions, directed A025048, A025049.
A325534 counts separable partitions, ranked by A335433.
A344606 counts alternating permutations of prime indices with twins.
A344742 ranks twins and partitions with an alternating permutation.
A345192 counts non-alternating compositions.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[100],Select[Permutations[Flatten[ ConstantArray@@@FactorInteger[#]]],wigQ]=={}&]

A349053 Number of non-weakly alternating integer compositions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 12, 37, 95, 232, 533, 1198, 2613, 5619, 11915, 25011, 52064, 107694, 221558, 453850, 926309, 1884942, 3825968, 7749312, 15667596, 31628516, 63766109, 128415848, 258365323, 519392582, 1043405306, 2094829709, 4203577778, 8431313237, 16904555958
Offset: 0

Views

Author

Gus Wiseman, Dec 16 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. Then a sequence is (strongly) alternating iff it is a weakly alternating anti-run.

Examples

			The a(6) = 12 compositions:
  (1,1,2,2,1)  (1,1,2,3)  (1,2,4)
  (1,2,1,1,2)  (1,2,3,1)  (4,2,1)
  (1,2,2,1,1)  (1,3,2,1)
  (2,1,1,2,1)  (2,1,1,3)
               (3,1,1,2)
               (3,2,1,1)
		

Crossrefs

Complementary directed versions are A129852/A129853, strong A025048/A025049.
The strong version is A345192.
The complement is counted by A349052.
These compositions are ranked by A349057, strong A345168.
The complementary version for patterns is A349058, strong A345194.
The complementary multiplicative version is A349059, strong A348610.
An unordered version (partitions) is A349061, complement A349060.
The version for ordered prime factorizations is A349797, complement A349056.
The version for patterns is A350138, strong A350252.
The version for ordered factorizations is A350139.
A001250 counts alternating permutations, complement A348615.
A001700 counts compositions of 2n with alternating sum 0.
A003242 counts Carlitz (anti-run) compositions.
A011782 counts compositions, unordered A000041.
A025047 counts alternating compositions, ranked by A345167.
A106356 counts compositions by number of maximal anti-runs.
A344604 counts alternating compositions with twins.
A345164 counts alternating ordered prime factorizations.
A349054 counts strict alternating compositions.

Programs

  • Mathematica
    wwkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}]||And@@Table[If[EvenQ[m],y[[m]]>=y[[m+1]],y[[m]]<=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!wwkQ[#]&]],{n,0,10}]

Formula

a(n) = A011782(n) - A349052(n).

Extensions

a(21)-a(35) from Martin Ehrenstein, Jan 08 2022

A349052 Number of weakly alternating compositions of n.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 28, 52, 91, 161, 280, 491, 850, 1483, 2573, 4469, 7757, 13472, 23378, 40586, 70438, 122267, 212210, 368336, 639296, 1109620, 1925916, 3342755, 5801880, 10070133, 17478330, 30336518, 52653939, 91389518, 158621355, 275313226, 477850887, 829388075
Offset: 0

Views

Author

Gus Wiseman, Nov 29 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. A sequence is alternating iff it is a weakly alternating anti-run.

Examples

			The a(5) = 16 compositions:
  (1,1,1,1,1)  (1,1,1,2)  (1,1,3)  (1,4)  (5)
               (1,1,2,1)  (1,2,2)  (2,3)
               (1,2,1,1)  (1,3,1)  (3,2)
               (2,1,1,1)  (2,1,2)  (4,1)
                          (2,2,1)
                          (3,1,1)
The a(6) = 28 compositions:
  (111111)  (11112)  (1113)  (114)  (15)  (6)
            (11121)  (1122)  (132)  (24)
            (11211)  (1131)  (141)  (33)
            (12111)  (1212)  (213)  (42)
            (21111)  (1311)  (222)  (51)
                     (2121)  (231)
                     (2211)  (312)
                     (3111)  (411)
		

Crossrefs

The strong case is A025047, ranked by A345167.
The directed versions are A129852 and A129853, strong A025048 and A025049.
The complement is counted by A349053, strong A345192.
The version for permutations of prime indices is A349056, strong A345164.
The complement is ranked by A349057, strong A345168.
The version for patterns is A349058, strong A345194.
The multiplicative version is A349059, strong A348610.
An unordered version (partitions) is A349060, complement A349061.
The non-alternating case is A349800, ranked by A349799.
A001250 counts alternating permutations, complement A348615.
A001700 counts compositions of 2n with alternating sum 0.
A003242 counts Carlitz (anti-run) compositions.
A011782 counts compositions.
A106356 counts compositions by number of maximal anti-runs.
A344604 counts alternating compositions with twins.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A349054 counts strict alternating compositions.

Programs

  • Mathematica
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],whkQ[#]||whkQ[-#]&]],{n,0,10}]
  • PARI
    C(n,f)={my(M=matrix(n,n,j,k,k>=j), s=M[,n]); for(b=1, n, f=!f; M=matrix(n,n,j,k, if(k1,M[j-k,k-1]) ))); for(k=2, n, M[,k]+=M[,k-1]); s+=M[,n]); s~}
    seq(n) = concat([1], C(n,0) + C(n,1) - vector(n,j,numdiv(j))) \\ Andrew Howroyd, Jan 31 2024

Extensions

a(21)-a(37) from Martin Ehrenstein, Jan 08 2022

A345163 Number of integer partitions of n with an alternating permutation covering an initial interval of positive integers.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 11, 12, 16, 20, 23, 27, 34, 41, 48, 57, 68, 80, 94, 110, 130, 153, 175, 203, 239, 275, 317, 365, 420, 483, 553, 632, 720, 825, 938, 1064, 1211, 1370, 1550, 1755, 1982, 2235, 2517, 2830, 3182, 3576, 4006, 4487, 5027, 5619, 6275, 7007, 7812
Offset: 0

Views

Author

Gus Wiseman, Jun 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,3,2,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,3,2,1,2), (2,3,2,1,2,3,2), and (2,1,2,3,2,3,2).
A partition with k parts is alternating if and only every part has a multiplicity no greater than k/2, except either the smallest or largest part may have a multiplicity of (k+1)/2 when k is odd. - Andrew Howroyd, Jan 31 2024

Examples

			The a(3) = 1 through a(12) = 7 partitions:
  21  211  221  321   3211   3221   3321    4321     33221    33321
                2211  22111  22211  32211   33211    43211    43221
                             32111  222111  322111   322211   332211
                                            2221111  332111   432111
                                                     2222111  3222111
                                                     3221111  3321111
                                                              22221111
For example, the partition (3,3,2,1,1,1,1) has the alternating permutations (1,3,1,3,1,2,1), (1,3,1,2,1,3,1), and (1,2,1,3,1,3,1), so is counted under a(12).
		

Crossrefs

Not requiring an alternating permutation gives A000670, ranked by A333217.
The complement in covering partitions is counted by A345162.
Not requiring normality gives A345170, ranked by A345172.
A000041 counts integer partitions.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions, also A025048, A025049.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344605 counts alternating patterns with twins.
A345164 counts alternating permutations of prime indices.
A345165 counts partitions without a alternating permutation, ranked by A345171.
A349051 ranks alternating compositions.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&Select[Permutations[#],wigQ]!={}&]],{n,0,15}]
  • PARI
    \\ See also A345162 for a faster program.
    ok(k,p)={my(S=Set(p)); foreach(S, t, my(c=k+#p-2*(1+#select(x->x==t, p))); if(c<0, return(c==-1 && (t==1||t==k)))); 1}
    a(n)={sum(k=1, (sqrtint(8*n+1)-1)\2, s=0; forpart(p=n-binomial(k+1,2), s+=ok(k,Vec(p)), k); s)} \\ Andrew Howroyd, Jan 31 2024

Formula

The Heinz numbers of these partitions are A333217 /\ A345172.
a(n) = A000009(n) - A345162(n). - Andrew Howroyd, Jan 31 2024

Extensions

a(26) onwards from Andrew Howroyd, Jan 31 2024

A345194 Number of alternating patterns of length n.

Original entry on oeis.org

1, 1, 2, 6, 22, 102, 562, 3618, 26586, 219798, 2018686, 20393790, 224750298, 2683250082, 34498833434, 475237879950, 6983085189454, 109021986683046, 1802213242949602, 31447143854808378, 577609702827987882, 11139837273501641502, 225075546284489412854
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2021

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). An alternating pattern is necessarily an anti-run (A005649).
The version with twins (A344605) is identical to this sequence except with a(2) = 3 instead of 2.
From Gus Wiseman, Jan 16 2022: (Start)
Conjecture: Also the number of weakly up/down patterns of length n, where a sequence is weakly up/down if it is alternately weakly increasing and weakly decreasing, starting with an increase. For example, the a(0) = 1 through a(3) = 6 weakly up/down patterns are:
() (1) (1,1) (1,1,1)
(2,1) (1,1,2)
(2,1,1)
(2,1,2)
(2,1,3)
(3,1,2)
(End)

Examples

			The a(0) = 1 through a(3) = 6 alternating patterns:
  ()  (1)  (1,2)  (1,2,1)
           (2,1)  (1,3,2)
                  (2,1,2)
                  (2,1,3)
                  (2,3,1)
                  (3,1,2)
		

Crossrefs

The version for permutations is A001250, complement A348615.
The version for compositions is A025047, complement A345192.
The version with twins (x,x) is A344605.
The version for perms of prime indices is A345164, complement A350251.
The version for factorizations is A348610, complement A348613, weak A349059.
The weak version is A349058, complement A350138, compositions A349052.
The complement is counted by A350252.
A000670 = patterns, ranked by A333217.
A003242 = anti-run compositions.
A005649 = anti-run patterns, complement A069321.
A019536 = necklace patterns.
A129852 and A129853 = up/down and down/up compositions.
A226316 = patterns avoiding (1,2,3), weakly A052709, complement A335515.
A345170 = partitions w/ alternating permutation, complement A345165.
A349055 = normal multisets w/ alternating permutation, complement A349050.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    allnorm[n_]:=If[n<=0,{{}},Function[s, Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],wigQ]],{n,0,6}]
  • PARI
    F(p,x) = {sum(k=0, p, (-1)^((k+1)\2)*binomial((p+k)\2, k)*x^k)}
    R(n,k) = {Vec(if(k==1, x, 2*F(k-2,-x)/F(k-1,x)-2-(k-2)*x) + O(x*x^n))}
    seq(n)= {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 04 2022

Formula

a(n) = 2*A350354(n) for n >= 2. - Andrew Howroyd, Feb 04 2022

Extensions

a(10)-a(18) from Alois P. Heinz, Dec 10 2021
Terms a(19) and beyond from Andrew Howroyd, Feb 04 2022

A349057 Numbers k such that the k-th composition in standard order is not weakly alternating.

Original entry on oeis.org

37, 46, 52, 53, 69, 75, 78, 92, 93, 101, 104, 105, 107, 110, 116, 117, 133, 137, 139, 142, 150, 151, 156, 157, 165, 174, 180, 181, 184, 185, 186, 187, 190, 197, 200, 201, 203, 206, 208, 209, 210, 211, 214, 215, 220, 221, 229, 232, 233, 235, 238, 244, 245, 261
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and corresponding compositions begin:
   37: (3,2,1)
   46: (2,1,1,2)
   52: (1,2,3)
   53: (1,2,2,1)
   69: (4,2,1)
   75: (3,2,1,1)
   78: (3,1,1,2)
   92: (2,1,1,3)
   93: (2,1,1,2,1)
  101: (1,3,2,1)
  104: (1,2,4)
  105: (1,2,3,1)
  107: (1,2,2,1,1)
  110: (1,2,1,1,2)
  116: (1,1,2,3)
  117: (1,1,2,2,1)
		

Crossrefs

The strong case is A345168, complement A345167, counted by A345192.
The strong anti-run case is A345169, counted by A345195.
Including all non-anti-runs gives A348612, complement A333489.
These compositions are counted by A349053, complement A349052.
The directed cases are counted by A129852 (incr.) and A129853 (decr.).
The complement for patterns is A349058, strong A345194.
The complement for ordered factorizations is A349059, strong A348610.
Partitions of this type are counted by A349061, complement A349060.
Partitions of this type are ranked by A349794.
Non-strict partitions of this type are counted by A349796.
Permutations of prime indices of this type are counted by A349797.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions, complement A261983.
A011782 counts compositions.
A025047 counts alternating/wiggly compositions, directed A025048, A025049.
A345164 counts alternating permutations of prime indices, weak A349056.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A349054 counts strict alternating compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    whkQ[y_]:=And@@Table[If[EvenQ[m], y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Select[Range[0,100],!whkQ[stc[#]]&&!whkQ[-stc[#]]&]

A345166 Number of separable integer partitions of n without an alternating permutation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 5, 6, 7, 10, 14, 18, 21, 27, 35, 42, 54, 65, 78, 95, 117, 140, 170, 202, 239, 286, 343, 401, 476, 562, 660, 775, 910, 1056, 1241, 1444, 1678, 1948, 2267, 2615, 3031, 3502, 4036, 4647, 5356, 6143, 7068, 8101, 9274, 10613, 12151, 13856
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

A partition is separable if it has an anti-run permutation (no adjacent parts equal).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
The partitions counted by this sequence are those with 2m-1 parts with m being the multiplicity of a part which is neither the smallest or largest part. For example, 4322221 is such a partition since the multiplicity of 2 is 4, the total number of parts is 7, and 2 is neither the smallest or largest part. - Andrew Howroyd, Jan 15 2024

Examples

			The a(10) = 1 through a(16) = 6 partitions:
    32221  42221  52221  62221    43331    43332    53332
                         3222211  72221    53331    63331
                                  4222211  82221    92221
                                           3322221  4322221
                                           5222211  6222211
                                                    322222111
		

Crossrefs

Allowing alternating permutations gives A325534, ranked by A335433.
Not requiring separability gives A345165, ranked by A345171.
Permutations of this type are ranked by A345169.
The Heinz numbers of these partitions are A345173.
Numbers with a factorization of this type are A348609.
A000041 counts integer partitions.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions, also A025048, A025049.
A325535 counts inseparable partitions, ranked by A335448.
A344654 counts non-twin partitions w/o alt permutation, rank A344653.
A345162 counts normal partitions w/o alt permutation, complement A345163.
A345170 counts partitions w/ alt permutation, ranked by A345172.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]!={}&&Select[Permutations[#],wigQ]=={}&]],{n,0,15}]

Formula

The Heinz numbers of these partitions are A345173 = A345171 /\ A335433.
a(n) = A325534(n) - A345170(n). - Andrew Howroyd, Jan 15 2024

Extensions

a(26) onwards from Andrew Howroyd, Jan 15 2024

A344742 Numbers whose prime factors have a permutation with no consecutive monotone triple, i.e., no triple (..., x, y, z, ...) such that either x <= y <= z or x >= y >= z.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Gus Wiseman, Jun 12 2021

Keywords

Comments

Differs from A335433 in having all squares of primes (A001248) and lacking 270 etc.
Also Heinz numbers of integer partitions that are either a twin (x,x) or have a wiggly permutation.
(1) The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
(2) A sequence is wiggly if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no wiggly permutations, even though it has anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The sequence of terms together with their prime indices begins:
      1: {}          18: {1,2,2}     36: {1,1,2,2}
      2: {1}         19: {8}         37: {12}
      3: {2}         20: {1,1,3}     38: {1,8}
      4: {1,1}       21: {2,4}       39: {2,6}
      5: {3}         22: {1,5}       41: {13}
      6: {1,2}       23: {9}         42: {1,2,4}
      7: {4}         25: {3,3}       43: {14}
      9: {2,2}       26: {1,6}       44: {1,1,5}
     10: {1,3}       28: {1,1,4}     45: {2,2,3}
     11: {5}         29: {10}        46: {1,9}
     12: {1,1,2}     30: {1,2,3}     47: {15}
     13: {6}         31: {11}        49: {4,4}
     14: {1,4}       33: {2,5}       50: {1,3,3}
     15: {2,3}       34: {1,7}       51: {2,7}
     17: {7}         35: {3,4}       52: {1,1,6}
For example, the prime factors of 120 are (2,2,2,3,5), with the two wiggly permutations (2,3,2,5,2) and (2,5,2,3,2), so 120 is in the sequence.
		

Crossrefs

Positions of nonzero terms in A344606.
The complement is A344653, counted by A344654.
These partitions are counted by A344740.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A001248 lists squares of primes.
A001250 counts wiggly permutations.
A003242 counts anti-run compositions.
A011782 counts compositions.
A025047 counts wiggly compositions (ascend: A025048, descend: A025049).
A056239 adds up prime indices, row sums of A112798.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts wiggly compositions with twins.
A345164 counts wiggly permutations of prime indices.
A345165 counts partitions without a wiggly permutation, ranked by A345171.
A345170 counts partitions with a wiggly permutation, ranked by A345172.
A345192 counts non-wiggly compositions.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Flatten[ConstantArray@@@FactorInteger[#]]],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]!={}&]

Formula

Union of A345172 (wiggly) and A001248 (squares of primes).
Previous Showing 11-20 of 41 results. Next