cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A351459 Intersection of A349745 and A351458: numbers k for which k * gcd(sigma(k), A003961(k)) is equal to sigma(k) * gcd(k, A003961(k)) and also k * gcd(sigma(k), A276086(k)) is equal to sigma(k) * gcd(k, A276086(k)).

Original entry on oeis.org

1, 345080736, 459818240, 51001180160
Offset: 1

Views

Author

Antti Karttunen, Feb 18 2022

Keywords

Comments

All 3-perfect numbers (A005820) that are even and not multiples of 3 are included in this sequence, including also any hypothetical term of the form 4u+2.
If A323653 is indeed a subsequence of this sequence, then there are no odd perfect numbers. - Antti Karttunen, Jul 17 2023

Crossrefs

Intersection of A349745 and A351458.
Cf. A323653 (conjectured subsequence, all 23 known terms are present).

A351548 a(n) = A349745(n) divided by 2 if it is even, and 0 if A349745(n) is odd.

Original entry on oeis.org

0, 60, 108, 336, 1232, 11088, 114240, 261888, 320320, 418880, 2790720, 2882880, 3769920, 6499584, 9801792, 16930368, 19171152, 35672000, 47736000, 51068160, 98654400, 110046720, 172540368, 229909120, 403504640, 487788480, 738152448, 755415680, 886792320, 1960686000, 2070484416, 2339064000, 2889432000
Offset: 1

Views

Author

Antti Karttunen, Feb 18 2022

Keywords

Comments

Questions: Are all nonzero terms abundant (in A005101)? Are all terms even? Could either be proved? See also comments in A351538 and in A351549.
The terms a(2) .. a(52) are all also practical (A005153) and Zumkeller (A083207). - Antti Karttunen, Dec 05 2024

Crossrefs

Cf. A005101, A005153, A083207, A326051 (all six known terms are present here), A329963, A349169, A349745, A351458, A351459, A351538.
Cf. also A351549.

Programs

Formula

a(n) = 0 if A349745(n) is odd, a(n) = A349745(n)/2 otherwise.

A342671 a(n) = gcd(sigma(n), A003961(n)), where A003961 is fully multiplicative with a(prime(k)) = prime(k+1), and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 3, 1, 21, 1, 3, 1, 15, 1, 3, 5, 1, 1, 3, 1, 9, 1, 3, 1, 1, 1, 3, 1, 9, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 1, 15, 1, 3, 5, 3, 1, 21, 1, 3, 1, 1, 7, 3, 1, 9, 1, 3, 1, 15, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 5, 9, 1, 3, 1, 3, 1, 3, 1, 9, 1, 3, 13, 7, 1, 3, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Mar 20 2021

Keywords

Crossrefs

Cf. A000203, A003961, A161942, A286385, A341529, A342672, A342673, A348992, A349161, A349162, A349163, A349164, A349165 (positions of 1's), A349166 (of terms > 1), A349167, A349756, A350071 [= a(n^2)], A355828 (Dirichlet inverse).
Cf. A349169, A349745, A355833, A355924 (applied onto prime shift array A246278).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A342671(n) = gcd(sigma(n), A003961(n));

Formula

a(n) = gcd(A000203(n), A003961(n)).
a(n) = gcd(A000203(n), A286385(n)) = gcd(A003961(n), A286385(n)).
a(n) = A341529(n) / A342672(n).
From Antti Karttunen, Jul 21 2022: (Start)
a(n) = A003961(n) / A349161(n).
a(n) = A000203(n) / A349162(n).
a(n) = A161942(n) / A348992(n).
a(n) = A003961(A349163(n)) = A003961(n/A349164(n)).
(End)

A349169 Numbers k such that k * gcd(sigma(k), A003961(k)) is equal to the odd part of {sigma(k) * gcd(k, A003961(k))}, where A003961 shifts the prime factorization one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 15, 105, 3003, 3465, 13923, 45045, 264537, 459459, 745875, 1541475, 5221125, 8729721, 10790325, 14171625, 29288025, 34563375, 57034575, 71430975, 99201375, 109643625, 144729585, 205016175, 255835125, 295708875, 356080725, 399242025, 419159475, 449323875, 928602675, 939495375, 1083656925, 1941623775, 1962350685, 2083228875
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2021

Keywords

Comments

Numbers k such that A348990(k) [= k/gcd(k, A003961(k))] is equal to A348992(k), which is the odd part of A349162(k), thus all terms must be odd, as A348990 preserves the parity of its argument.
Equally, numbers k for which gcd(A064987(k), A191002(k)) is equal to A000265(gcd(A064987(k), A341529(k))).
Also odd numbers k for which A348993(k) = A319627(k).
Odd terms of A336702 are given by the intersection of this sequence and A349174.
Conjectures:
(1) After 1, all terms are multiples of 3. (Why?)
(2) After 1, all terms are in A104210, in other words, for all n > 1, gcd(a(n), A003961(a(n))) > 1. Note that if we encountered a term k with gcd(k, A003961(k)) = 1, then we would have discovered an odd multiperfect number.
(3) Apart from 1, 15, 105, 3003, 13923, 264537, all other terms are abundant. [These apparently are also the only terms that are not Zumkeller, A083207. Note added Dec 05 2024]
(4) After 1, all terms are in A248150. (Cf. also A386430).
(5) After 1, all terms are in A348748.
(6) Apart from 1, there are no common terms with A349753.
Note: If any of the last four conjectures could be proved, it would refute the existence of odd perfect numbers at once. Note that it seems that gcd(sigma(k), A003961(k)) < k, for all k except these four: 1, 2, 20, 160.
Questions:
(1) For any term x here, can 2*x be in A349745? (Partial answer: at least x should be in A191218 and should not be a multiple of 3). Would this then imply that x is an odd perfect number? (Which could explain the points (1) and (4) in above, assuming the nonexistence of opn's).

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], #1/GCD[#1, #3] == #2/(2^IntegerExponent[#2, 2]*GCD[#2, #3]) & @@ {#, DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A000265(n) = (n >> valuation(n, 2));
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349169(n) = { my(s=sigma(n),u=A003961(n)); (n*gcd(s,u) == A000265(s)*gcd(n,u)); }; \\ (Program simplified Nov 30 2021)

Formula

For all n >= 1, A007949(A000203(a(n))) = A007949(a(n)). [sigma preserves the 3-adic valuation of the terms of this sequence] - Antti Karttunen, Nov 29 2021

Extensions

Name changed and comment section rewritten by Antti Karttunen, Nov 29 2021

A323653 Multiperfect numbers m such that sigma(m) is also multiperfect.

Original entry on oeis.org

1, 459818240, 51001180160, 13188979363639752997731839211623940096, 5157152737616023231698245840143799191339008, 54530444405217553992377326508106948362108928, 133821156044600922812153118065015159487725568, 4989680372093758991515359988337845750507257510078971904
Offset: 1

Views

Author

Jaroslav Krizek, Jan 21 2019

Keywords

Comments

Multiperfect numbers m such that sigma(m) divides sigma(sigma(m)).
Also k-multiperfect numbers m such that k*m is also multiperfect.
Corresponding values of numbers k(n) = sigma(a(n)) / a(n): 1, 3, 3, 5, 5, 5, 5, 5, ...
Corresponding values of numbers h(n) = sigma(k(n) * a(n)) / (k(n) * a(n)): 1, 4, 4, 6, 6, 6, 6, 6, ...
Number of k-multiperfect numbers m such that sigma(n) is also multiperfect for k = 3..6: 2, 0, 20, 0.
From Antti Karttunen, Mar 20 2021, Feb 18 2022: (Start)
Conjecture 1 (a): This sequence consists of those m for which sigma(m)/m is an integer (thus a term of A007691), and coprime with m. Or expressed in a slightly weaker form (b): {1} followed by those m for which sigma(m)/m is an integer, but not a divisor of m. In a slightly stronger form (c): For m > 1, sigma(m)/m is always the least prime not dividing m. This would imply both (a) and (b) forms.
Conjecture 2: This sequence is finite.
Conjecture 3: This sequence is the intersection of A007691 and A351458.
Conjecture 4: This is a subsequence of A349745, thus also of A351551 and of A351554.
Note that if there existed an odd perfect number x that were not a multiple of 3, then both x and 2*x would be terms in this sequence, as then we would have: sigma(x)/x = 2, sigma(2*x)/(2*x) = 3, sigma(6*x)/(6*x) = 4. See also the diagram in A347392 and A353365.
(End)
From Antti Karttunen, May 16 2022: (Start)
Apparently for all n > 1, A336546(a(n)) = 0. [At least for n=2..23], while A353633(a(n)) = 1, for n=1..23.
The terms a(1) .. a(23) are only cases present among the 5721 known and claimed multiperfect numbers with abundancy <> 2, as published 03 January 2022 under Flammenkamp's site, that satisfy the condition for inclusion in this sequence.
They are also the only 23 cases among that data such that gcd(n, sigma(n)/n) = 1, or in other words, for which the n and its abundancy are relatively prime, with abundancy in all cases being the least prime that does not divide n, A053669(n), which is a sufficient condition for inclusion in A351458.
(End)

Examples

			3-multiperfect number 459818240 is a term because number 3*459818240 = 1379454720 is a 4-multiperfect number.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^6] | SumOfDivisors(n) mod n eq 0 and SumOfDivisors(SumOfDivisors(n)) mod SumOfDivisors(n) eq 0];
    
  • PARI
    ismulti(n) = (sigma(n) % n) == 0;
    isok(n) = ismulti(n) && ismulti(sigma(n)); \\ Michel Marcus, Jan 26 2019

A349162 a(n) = sigma(n) / gcd(sigma(n), A003961(n)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 4, 7, 6, 4, 8, 5, 13, 6, 12, 28, 14, 8, 24, 31, 18, 13, 20, 2, 32, 12, 24, 4, 31, 14, 8, 56, 30, 24, 32, 7, 48, 18, 48, 91, 38, 20, 56, 10, 42, 32, 44, 28, 78, 24, 48, 124, 57, 31, 72, 98, 54, 8, 72, 40, 16, 30, 60, 8, 62, 32, 104, 127, 12, 48, 68, 14, 96, 48, 72, 13, 74, 38, 124, 140, 96, 56, 80, 62, 121, 42
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Denominator of ratio A003961(n) / A000203(n).
Small values are rare, but are not limited to the beginning. For example in range 1 .. 2^25, a(n) = 4 at n = 3, 6, 24, 792, 2720, 122944, 31307472.
Question: Would it be possible to prove that a(n) > 1 for all n > 2?
Obviously, 1's may occur only on squares & twice squares (A028982). See also comments in A350072. - Antti Karttunen, Feb 16 2022

Crossrefs

Cf. A000203, A003961, A028982 (positions of odd terms), A319630, A336702, A342671, A348992 (the odd part), A348993, A349161 (numerators), A349163, A349164, A349627, A349628, A350072 [= a(n^2)].
Cf. also A349745, A351551, A351554.

Programs

  • Mathematica
    Array[#1/GCD[##] & @@ {DivisorSigma[1, #], If[# == 1, 1, Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]]} &, 82] (* Michael De Vlieger, Nov 11 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A349162(n) = { my(s=sigma(n)); (s/gcd(s,A003961(n))); };

Formula

a(n) = A000203(n) / A342671(n) = A000203(n) / gcd(A000203(n), A003961(n)).

A351458 Numbers k for which k * gcd(sigma(k), A276086(k)) is equal to sigma(k) * gcd(k, A276086(k)), where A276086 is the primorial base exp-function, and sigma gives the sum of divisors of its argument.

Original entry on oeis.org

1, 10, 56, 9196, 9504, 56160, 121176, 239096, 354892, 411264, 555520, 716040, 804384, 904704, 1063348, 1387386, 1444352, 1454112, 1884800, 2708640, 3317248, 3548920, 4009824, 4634784, 6179712, 6795360, 7285248, 14511744, 16328466, 28377216, 29855232, 31940280, 37444736, 42711552, 49762944, 52815744
Offset: 1

Views

Author

Antti Karttunen, Feb 13 2022

Keywords

Comments

Numbers k such that k * A324644(k) = A000203(k) * A324198(k).
Numbers k such that gcd(A064987(k), A324580(k)) = gcd(A064987(k), A351252(k)).
Numbers k such that their abundancy index [sigma(k)/k] is equal to A324644(k)/A324198(k). See A364286.
A324644 gives odd values for even numbers and for the odd squares. A324198 is odd on all arguments, therefore on odd squares the above equation reduces to odd * odd = odd * odd, and on odd nonsquares as odd * even = even * odd. It is an open question whether there are any odd terms after the initial a(1)=1.
If k is even, but not a multiple of 3, then A276086(k) is a multiple of 3, but not even (i.e., is an odd multiple of 3). If for such k also sigma(k) = 3*k, then A007949(A324644(k)) = min(A007949(sigma(k)), A007949(A276086(k))) = 1, while A007949(A324198(k)) = min(A007949(k), A007949(A276086(k))) = 0, therefore all such k's do occur in this sequence, for example, the two known terms of A005820 (3-perfect numbers) that are not multiples of three: 459818240, 51001180160, but also any hypothetical term of A005820 of the form 4u+2, where 2u+1 is not multiple of 3, and which by necessity is then also an odd perfect number.
Similarly, of the 65 known 5-multiperfect numbers (A046060), those 20 that are not multiples of five are included in this sequence. Note that all 65 are multiples of six.
It is conjectured that the intersection of this sequence with the multiperfect numbers (A007691) gives A323653, see comments in the latter.
For all even terms k of this sequence, A007814(A000203(k)) = A007814(k), sigma preserves the 2-adic valuation, and A007949(A000203(k)) >= A007949(k), i.e., does not decrease the 3-adic valuation. The condition is equivalence (=) when k is a multiple of 6. With odd terms, any hypothetical odd perfect number x would yield a one greater 2-adic valuation for sigma(x) than for x, but would satisfy the main condition of this sequence. - Corrected Feb 17 2022
If k is a nonsquare positive odd number (in A088828), then it must be a term of A191218. - Antti Karttunen, Mar 10 2024

Crossrefs

Cf. also A351549.

Programs

  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA351458(n) = { my(s=sigma(n), z=A276086(n)); (n*gcd(s,z))==(s*gcd(n,z)); };
    
  • PARI
    A006530(n) = if(1==n, n, my(f=factor(n)); f[#f~, 1]); \\ Works OK with rationals also!
    isA351458(n) = { my(orgn=n, s=sigma(n), abi=s/n, p=2, q=A006530(abi), d, e1, e2); while((1!=abi)&&(p<=q), d = n%p; e1 = min(d, valuation(s, p)); e2 = min(d, valuation(orgn, p)); d = e1-e2; if(valuation(abi,p)!=d, return(0), abi /= (p^d)); n = n\p; p = nextprime(1+p)); (abi==1); }; \\ (This implementation does not require the construction of largish intermediate numbers, A276086, but might still be slower and return a few false positives on the long run, so please check the results with the above program). - Antti Karttunen, Feb 19 2022

A351551 Numbers k such that the largest unitary divisor of sigma(k) that is coprime with A003961(k) is also a unitary divisor of k.

Original entry on oeis.org

1, 2, 10, 34, 106, 120, 216, 260, 340, 408, 440, 580, 672, 696, 820, 1060, 1272, 1666, 1780, 1940, 2136, 2340, 2464, 3320, 3576, 3960, 4280, 4536, 5280, 5380, 5860, 6456, 6960, 7520, 8746, 8840, 9120, 9632, 10040, 10776, 12528, 12640, 13464, 14560, 16180, 16660, 17400, 17620, 19040, 19416, 19992, 21320, 22176, 22968
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2022

Keywords

Comments

Numbers k for which A351546(k) is a unitary divisor of k.
The condition guarantees that A351555(k) = 0, therefore this is a subsequence of A351554.
The condition is also a necessary condition for A349745, therefore it is a subsequence of this sequence.
All six known 3-perfect numbers (A005820) are included in this sequence.
All 65 known 5-multiperfects (A046060) are included in this sequence.
Not all multiperfects (A007691) are present (only 587 of the first 1600 are), but all 23 known terms of A323653 are terms, while none of the (even) terms of A046061 or A336702 are.

Examples

			For n = 672 = 2^5 * 3^1 * 7^1, and the largest unitary divisor of the sigma(672) [= 2^5 * 3^2 * 7^1] coprime with A003961(672) [= 13365 = 3^5 * 5^1 * 11^1] is 2^5 * 7^1 = 224, therefore A351546(672) is a unitary divisor of 672, and 672 is included in this sequence.
		

Crossrefs

Cf. A000203, A000396, A003961, A007691, A046061, A065997, A336702, A351546, A351555, A353633 (characteristic function).
Subsequence of A351552 and of A351554.
Cf. A349745, A351550 (subsequences), A005820, A046060, A323653 (very likely subsequences).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A351546(n) = { my(f=factor(sigma(n)),u=A003961(n)); prod(k=1,#f~,f[k,1]^((0!=(u%f[k,1]))*f[k,2])); };
    isA351551(n) =  { my(u=A351546(n)); (!(n%u) && 1==gcd(u,n/u)); };

A351554 Numbers k such that there are no odd prime factors p of sigma(k) such that p does not divide A003961(k) and the valuation(k, p) is different from valuation(sigma(k), p), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 3, 6, 7, 10, 14, 15, 20, 21, 22, 24, 27, 28, 30, 31, 33, 34, 40, 42, 46, 54, 57, 60, 62, 66, 69, 70, 84, 87, 91, 93, 94, 102, 105, 106, 110, 114, 120, 127, 130, 138, 140, 141, 142, 154, 160, 168, 170, 174, 177, 182, 186, 189, 190, 195, 198, 210, 214, 216, 217, 220, 224, 230, 231, 237, 238, 254, 260, 264, 270, 273
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2022

Keywords

Comments

Numbers k for which A351555(k) = 0. This is a necessary condition for the terms of A349169 and of A349745, therefore they are subsequences of this sequence.
All six known 3-perfect numbers (A005820) are included in this sequence.
All 65 known 5-multiperfects (A046060) are included in this sequence.
Moreover, all multiperfect numbers (A007691) seem to be in this sequence.
From Antti Karttunen, Aug 27 2025: (Start)
Multiperfect number m is included in this sequence only if its abundancy sigma(m)/m has only such odd prime factors p that prevprime(p) [A151799] divides m for each p. E.g., all 65 known 5-multiperfects are multiples of 3, and all known terms of A005820 and A046061 are even.
This sequence contains natural numbers k such that the odd primes in the prime factorization of sigma(k) have the same valuation there as in k, except that the primes in A003961(k) [or equally in A003961(A007947(k))] stand for "don't care primes", that are "masked off" from the comparison.
(End)

Crossrefs

Positions of zeros in A351555.
Subsequences: A000396, A351553 (even terms), A386430 (odd terms), A351551, A349169, A349745, A387160 (terms of the form prime * m^2), also these, at least all the currently (Feb 2022) known terms: A005820, A007691, A046060.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A351555(n) = { my(s=sigma(n),f=factor(s),u=A003961(n)); sum(k=1,#f~,if((f[k,1]%2) && 0!=(u%f[k,1]), (valuation(n,f[k,1])!=f[k,2]), 0)); };
    isA351554(n) = (0==A351555(n));
    
  • PARI
    isA351554(n) = { my(sh=A351546(n),f=factor(sh)); for(i=1,#f~, if((f[i,1]%2)&&valuation(n,f[i,1])!=f[i,2],return(0))); (1); }; \\ Uses also program given in A351546.

Extensions

Definition corrected by Antti Karttunen, Aug 22 2025

A351538 Numbers k such that both k and sigma(k) are congruent to 2 modulo 4 and the 3-adic valuation of sigma(k) is exactly 1.

Original entry on oeis.org

26, 74, 122, 146, 194, 218, 234, 314, 362, 386, 458, 482, 554, 626, 650, 666, 674, 698, 746, 794, 818, 842, 866, 914, 1082, 1098, 1154, 1202, 1226, 1314, 1322, 1346, 1418, 1466, 1514, 1538, 1658, 1706, 1746, 1754, 1850, 1874, 1962, 1994, 2018, 2042, 2066, 2106, 2138, 2186, 2234, 2258, 2306, 2402, 2426, 2474, 2498
Offset: 1

Views

Author

Antti Karttunen, Feb 14 2022

Keywords

Comments

All the terms of the form 4u+2 in A349745 (if they exist) are found in this sequence. As A351537 is the intersection of A191218 and A329963, and the latter has asymptotic density zero, so has this sequence also. It is conjectured that A351555(a(n)) is nonzero for all n, which would imply that the intersection with A349745 is empty. - Antti Karttunen, Feb 19 2022

Crossrefs

Probably a subsequence of A351543. (See also A351550, A351555).

Programs

  • PARI
    isA351538(n) = if(!(2==(n%4)),0, my(s=sigma(n)); (2 == (s%4)) && (1==valuation(s,3)));

Formula

a(n) = 2 * A351537(n).
Showing 1-10 of 14 results. Next