cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A351459 Intersection of A349745 and A351458: numbers k for which k * gcd(sigma(k), A003961(k)) is equal to sigma(k) * gcd(k, A003961(k)) and also k * gcd(sigma(k), A276086(k)) is equal to sigma(k) * gcd(k, A276086(k)).

Original entry on oeis.org

1, 345080736, 459818240, 51001180160
Offset: 1

Views

Author

Antti Karttunen, Feb 18 2022

Keywords

Comments

All 3-perfect numbers (A005820) that are even and not multiples of 3 are included in this sequence, including also any hypothetical term of the form 4u+2.
If A323653 is indeed a subsequence of this sequence, then there are no odd perfect numbers. - Antti Karttunen, Jul 17 2023

Crossrefs

Intersection of A349745 and A351458.
Cf. A323653 (conjectured subsequence, all 23 known terms are present).

A276086 Primorial base exp-function: digits in primorial base representation of n become the exponents of successive prime factors whose product a(n) is.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 625, 1250, 1875, 3750, 5625, 11250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 4375, 8750, 13125, 26250, 39375, 78750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450
Offset: 0

Views

Author

Antti Karttunen, Aug 21 2016

Keywords

Comments

Prime product form of primorial base expansion of n.
Sequence is a permutation of A048103. It maps the smallest prime not dividing n to the smallest prime dividing n, that is, A020639(a(n)) = A053669(n) holds for all n >= 1.
The sequence satisfies the exponential function identity, a(x + y) = a(x) * a(y), whenever A329041(x,y) = 1, that is, when adding x and y together will not generate any carries in the primorial base. Examples of such pairs of x and y are A328841(n) & A328842(n), and also A328770(n) (when added with itself). - Antti Karttunen, Oct 31 2019
From Antti Karttunen, Feb 18 2022: (Start)
The conjecture given in A327969 asks whether applying this function together with the arithmetic derivative (A003415) in some combination or another can eventually transform every positive integer into zero.
Another related open question asks whether there are any other numbers than n=6 such that when starting from that n and by iterating with A003415, one eventually reaches a(n). See comments in A351088.
This sequence is used in A351255 to list the terms of A099308 in a different order, by the increasing exponents of the successive primes in their prime factorization. (End)
From Bill McEachen, Oct 15 2022: (Start)
From inspection, the least significant decimal digits of a(n) terms form continuous chains of 30 as follows. For n == i (mod 30), i=0..5, there are 6 ordered elements of these 8 {1,2,3,6,9,8,7,4}. Then for n == i (mod 30), i=6..29, there are 12 repeated pairs = {5,0}.
Moreover, when the individual elements of any of the possible groups of 6 are transformed via (7*digit) (mod 10), the result matches one of the other 7 groupings (not all 7 may be seen). As example, {1,2,3,6,9,8} transforms to {7,4,1,2,3,6}. (End)
The least significant digit of a(n) in base 4 is given by A353486, and in base 6 by A358840. - Antti Karttunen, Oct 25 2022, Feb 17 2024

Examples

			For n = 24, which has primorial base representation (see A049345) "400" as 24 = 4*A002110(2) + 0*A002110(1) + 0*A002110(0) = 4*6 + 0*2 + 0*1, thus a(24) = prime(3)^4 * prime(2)^0 * prime(1)^0 = 5^4 = 625.
For n = 35 = "1021" as 35 = 1*A002110(3) + 0*A002110(2) + 2*A002110(1) + 1*A002110(0) = 1*30 + 0*6 + 2*2 + 1*1, thus a(35) = prime(4)^1 * prime(2)^2 * prime(1) = 7 * 3*3 * 2 = 126.
		

Crossrefs

Cf. A276085 (a left inverse) and also A276087, A328403.
Cf. A048103 (terms sorted into ascending order), A100716 (natural numbers not present in this sequence).
Cf. A278226 (associated filter-sequence), A286626 (and its rgs-version), A328477.
Cf. A328316 (iterates started from zero).
Cf. A327858, A327859, A327860, A327963, A328097, A328098, A328099, A328110, A328112, A328382 for various combinations with arithmetic derivative (A003415).
Cf. also A327167, A329037.
Cf. A019565 and A054842 for base-2 and base-10 analogs and A276076 for the analogous "factorial base exp-function", from which this differs for the first time at n=24, where a(24)=625 while A276076(24)=7.
Cf. A327969, A351088, A351458 for sequences with conjectures involving this sequence.

Programs

  • Mathematica
    b = MixedRadix[Reverse@ Prime@ Range@ 12]; Table[Function[k, Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ k, Reverse@ k}]@ IntegerDigits[n, b], {n, 0, 51}] (* Michael De Vlieger, Aug 23 2016, Version 10.2 *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, Reverse@ f@ n], {n, 0, 73}] (* Michael De Vlieger, Aug 30 2016, Pre-Version 10 *)
    a[n0_] := Module[{m = 1, i = 1, n = n0, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 01 2021, after Antti Karttunen's Sage code *)
  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; }; \\ Antti Karttunen, May 12 2017
    
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; \\ (Better than above one, avoids unnecessary construction of primorials). - Antti Karttunen, Oct 14 2019
    
  • Python
    from sympy import prime
    def a(n):
        i=0
        m=pr=1
        while n>0:
            i+=1
            N=prime(i)*pr
            if n%N!=0:
                m*=(prime(i)**((n%N)/pr))
                n-=n%N
            pr=N
        return m # Indranil Ghosh, May 12 2017, after Antti Karttunen's PARI code
    
  • Python
    from sympy import nextprime
    def a(n):
        m, p = 1, 2
        while n > 0:
            n, r = divmod(n, p)
            m *= p**r
            p = nextprime(p)
        return m
    print([a(n) for n in range(74)])  # Peter Luschny, Apr 20 2024
  • Sage
    def A276086(n):
        m=1
        i=1
        while n>0:
            p = sloane.A000040(i)
            m *= (p**(n%p))
            n = floor(n/p)
            i += 1
        return (m)
    # Antti Karttunen, Oct 14 2019, after Indranil Ghosh's Python code above, and my own leaner PARI code from Oct 14 2019. This avoids unnecessary construction of primorials.
    
  • Scheme
    (define (A276086 n) (let loop ((n n) (t 1) (i 1)) (if (zero? n) t (let* ((p (A000040 i)) (d (modulo n p))) (loop (/ (- n d) p) (* t (expt p d)) (+ 1 i))))))
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (expt (A053669 n) (A276088 n)) (A276086 (A276093 n))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (A053669 n) (A276086 (- n (A002110 (A276084 n))))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    

Formula

a(0) = 1; for n >= 1, a(n) = A053669(n) * a(A276151(n)) = A053669(n) * a(n-A002110(A276084(n))).
a(0) = 1; for n >= 1, a(n) = A053669(n)^A276088(n) * a(A276093(n)).
a(n) = A328841(a(n)) + A328842(a(n)) = A328843(n) + A328844(n).
a(n) = a(A328841(n)) * a(A328842(n)) = A328571(n) * A328572(n).
a(n) = A328475(n) * A328580(n) = A328476(n) + A328580(n).
a(A002110(n)) = A000040(n+1). [Maps primorials to primes]
a(A143293(n)) = A002110(n+1). [Maps partial sums of primorials to primorials]
a(A057588(n)) = A276092(n).
a(A276156(n)) = A019565(n).
a(A283477(n)) = A324289(n).
a(A003415(n)) = A327859(n).
Here the text in brackets shows how the right hand side sequence is a function of the primorial base expansion of n:
A001221(a(n)) = A267263(n). [Number of nonzero digits]
A001222(a(n)) = A276150(n). [Sum of digits]
A067029(a(n)) = A276088(n). [The least significant nonzero digit]
A071178(a(n)) = A276153(n). [The most significant digit]
A061395(a(n)) = A235224(n). [Number of significant digits]
A051903(a(n)) = A328114(n). [Largest digit]
A055396(a(n)) = A257993(n). [Number of trailing zeros + 1]
A257993(a(n)) = A328570(n). [Index of the least significant zero digit]
A079067(a(n)) = A328620(n). [Number of nonleading zeros]
A056169(a(n)) = A328614(n). [Number of 1-digits]
A056170(a(n)) = A328615(n). [Number of digits larger than 1]
A277885(a(n)) = A328828(n). [Index of the least significant digit > 1]
A134193(a(n)) = A329028(n). [The least missing nonzero digit]
A005361(a(n)) = A328581(n). [Product of nonzero digits]
A072411(a(n)) = A328582(n). [LCM of nonzero digits]
A001055(a(n)) = A317836(n). [Number of carry-free partitions of n in primorial base]
Various number theoretical functions applied:
A000005(a(n)) = A324655(n). [Number of divisors of a(n)]
A000203(a(n)) = A324653(n). [Sum of divisors of a(n)]
A000010(a(n)) = A324650(n). [Euler phi applied to a(n)]
A023900(a(n)) = A328583(n). [Dirichlet inverse of Euler phi applied to a(n)]
A069359(a(n)) = A329029(n). [Sum a(n)/p over primes p dividing a(n)]
A003415(a(n)) = A327860(n). [Arithmetic derivative of a(n)]
Other identities:
A276085(a(n)) = n. [A276085 is a left inverse]
A020639(a(n)) = A053669(n). [The smallest prime not dividing n -> the smallest prime dividing n]
A046523(a(n)) = A278226(n). [Least number with the same prime signature as a(n)]
A246277(a(n)) = A329038(n).
A181819(a(n)) = A328835(n).
A053669(a(n)) = A326810(n), A326810(a(n)) = A328579(n).
A257993(a(n)) = A328570(n), A328570(a(n)) = A328578(n).
A328613(a(n)) = A328763(n), A328620(a(n)) = A328766(n).
A328828(a(n)) = A328829(n).
A053589(a(n)) = A328580(n). [Greatest primorial number which divides a(n)]
A276151(a(n)) = A328476(n). [... and that primorial subtracted from a(n)]
A111701(a(n)) = A328475(n).
A328114(a(n)) = A328389(n). [Greatest digit of primorial base expansion of a(n)]
A328389(a(n)) = A328394(n), A328394(a(n)) = A328398(n).
A235224(a(n)) = A328404(n), A328405(a(n)) = A328406(n).
a(A328625(n)) = A328624(n), a(A328626(n)) = A328627(n). ["Twisted" variants]
a(A108951(n)) = A324886(n).
a(n) mod n = A328386(n).
a(a(n)) = A276087(n), a(a(a(n))) = A328403(n). [2- and 3-fold applications]
a(2n+1) = 2 * a(2n). - Antti Karttunen, Feb 17 2022

Extensions

Name edited and new link-formulas added by Antti Karttunen, Oct 29 2019
Name changed again by Antti Karttunen, Feb 05 2022

A323653 Multiperfect numbers m such that sigma(m) is also multiperfect.

Original entry on oeis.org

1, 459818240, 51001180160, 13188979363639752997731839211623940096, 5157152737616023231698245840143799191339008, 54530444405217553992377326508106948362108928, 133821156044600922812153118065015159487725568, 4989680372093758991515359988337845750507257510078971904
Offset: 1

Views

Author

Jaroslav Krizek, Jan 21 2019

Keywords

Comments

Multiperfect numbers m such that sigma(m) divides sigma(sigma(m)).
Also k-multiperfect numbers m such that k*m is also multiperfect.
Corresponding values of numbers k(n) = sigma(a(n)) / a(n): 1, 3, 3, 5, 5, 5, 5, 5, ...
Corresponding values of numbers h(n) = sigma(k(n) * a(n)) / (k(n) * a(n)): 1, 4, 4, 6, 6, 6, 6, 6, ...
Number of k-multiperfect numbers m such that sigma(n) is also multiperfect for k = 3..6: 2, 0, 20, 0.
From Antti Karttunen, Mar 20 2021, Feb 18 2022: (Start)
Conjecture 1 (a): This sequence consists of those m for which sigma(m)/m is an integer (thus a term of A007691), and coprime with m. Or expressed in a slightly weaker form (b): {1} followed by those m for which sigma(m)/m is an integer, but not a divisor of m. In a slightly stronger form (c): For m > 1, sigma(m)/m is always the least prime not dividing m. This would imply both (a) and (b) forms.
Conjecture 2: This sequence is finite.
Conjecture 3: This sequence is the intersection of A007691 and A351458.
Conjecture 4: This is a subsequence of A349745, thus also of A351551 and of A351554.
Note that if there existed an odd perfect number x that were not a multiple of 3, then both x and 2*x would be terms in this sequence, as then we would have: sigma(x)/x = 2, sigma(2*x)/(2*x) = 3, sigma(6*x)/(6*x) = 4. See also the diagram in A347392 and A353365.
(End)
From Antti Karttunen, May 16 2022: (Start)
Apparently for all n > 1, A336546(a(n)) = 0. [At least for n=2..23], while A353633(a(n)) = 1, for n=1..23.
The terms a(1) .. a(23) are only cases present among the 5721 known and claimed multiperfect numbers with abundancy <> 2, as published 03 January 2022 under Flammenkamp's site, that satisfy the condition for inclusion in this sequence.
They are also the only 23 cases among that data such that gcd(n, sigma(n)/n) = 1, or in other words, for which the n and its abundancy are relatively prime, with abundancy in all cases being the least prime that does not divide n, A053669(n), which is a sufficient condition for inclusion in A351458.
(End)

Examples

			3-multiperfect number 459818240 is a term because number 3*459818240 = 1379454720 is a 4-multiperfect number.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^6] | SumOfDivisors(n) mod n eq 0 and SumOfDivisors(SumOfDivisors(n)) mod SumOfDivisors(n) eq 0];
    
  • PARI
    ismulti(n) = (sigma(n) % n) == 0;
    isok(n) = ismulti(n) && ismulti(sigma(n)); \\ Michel Marcus, Jan 26 2019

A349745 Numbers k for which k * gcd(sigma(k), A003961(k)) is equal to sigma(k) * gcd(k, A003961(k)), where A003961 shifts the prime factorization one step towards larger primes, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 120, 216, 672, 2464, 22176, 228480, 523776, 640640, 837760, 5581440, 5765760, 7539840, 12999168, 19603584, 33860736, 38342304, 71344000, 95472000, 102136320, 197308800, 220093440, 345080736, 459818240, 807009280, 975576960, 1476304896, 1510831360, 1773584640
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2021

Keywords

Comments

Numbers k for which k * A342671(k) = A000203(k) * A322361(k).
Numbers k such that gcd(A064987(k), A191002(k)) = gcd(A064987(k), A341529(k)).
Obviously, all odd terms in this sequence must be squares.
All the terms k of A005820 that satisfy A007949(k) < A007814(k) [i.e., whose 3-adic valuation is strictly less than their 2-adic valuation] are also terms of this sequence. Incidentally, the first six known terms of A005820 satisfy this condition, while on the other hand, any hypothetical odd 3-perfect number would be excluded from this sequence. Also, as a corollary, any hypothetical 3-perfect numbers of the form 4u+2 must not be multiples of 3 if they are to appear here. Similarly for any k which occurs in A349169, for 2*k to occur in this sequence, it shouldn't be a multiple of 3 and k should also be a term of A191218. See question 2 and its partial answer in A349169.
From Antti Karttunen, Feb 13-20 2022: (Start)
Question: Are all terms/2 (A351548) abundant, from n > 1 onward?
Note that of the 65 known 5-multiperfect numbers, all others except these three 1245087725796543283200, 1940351499647188992000, 4010059765937523916800 are also included in this sequence. The three exceptions are distinguished by the fact that their 3 and 5-adic valuations are equal. In 62 others the former is larger.
If k satisfying the condition were of the form 4u+2, then it should be one of the terms of A191218 doubled as only then both k and sigma(k) are of the form 4u+2, with equal 2-adic valuations for both. More precisely, one of the terms of A351538.
(End)

Crossrefs

Cf. also A349169, A349746, A351458, A351549 for other variants.
Subsequence of A351554 and also of its subsequence A351551.
Cf. A351459 (subsequence, intersection with A351458), A351548 (terms halved).

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := NextPrime[p]^e; q[1] = True; q[n_] := n * GCD[(s = Times @@ f1 @@@ (f = FactorInteger[n])), (r = Times @@ f2 @@@ f)] == s*GCD[n, r]; Select[Range[10^6], q] (* Amiram Eldar, Nov 29 2021 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA349745(n) = { my(s=sigma(n),u=A003961(n)); (n*gcd(s,u) == (s*gcd(n,u))); };

Formula

For all n >= 1, A007814(A000203(a(n))) = A007814(a(n)). [sigma preserves the 2-adic valuation of the terms of this sequence]

A364286 Composite numbers k for which A324644(k)/A324198(k) = 2.

Original entry on oeis.org

33, 51, 69, 91, 99, 135, 141, 145, 153, 159, 187, 207, 213, 217, 285, 295, 303, 321, 339, 391, 411, 423, 427, 435, 445, 477, 507, 519, 573, 637, 639, 679, 681, 699, 771, 783, 799, 843, 855, 861, 885, 895, 901, 909, 933, 951, 963, 1017, 1041, 1057, 1059, 1071, 1081, 1083, 1147, 1149, 1173, 1185, 1195, 1203, 1207
Offset: 1

Views

Author

Antti Karttunen, Jul 17 2023

Keywords

Comments

See comments in A351458.
All terms are odd. Of the 63 initial terms of A349169, only term 13923 occurs also in this sequence. The first common term with A332458 is 161257. - Antti Karttunen, Mar 10 2024

Crossrefs

Subsequence of A082686.

Programs

  • Mathematica
    f[x_] := Block[{m, i, n = x, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m]; Select[Select[Range[1350], CompositeQ], GCD[#2, #3]/GCD[#1, #3] == 2 & @@ {#, DivisorSigma[1, #], f[#]} &] (* Michael De Vlieger, Mar 10 2024 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA364286(n) = if(isprime(n), 0, my(u=A276086(n)); (gcd(sigma(n),u)==2*gcd(n,u))); \\ Antti Karttunen, Mar 10 2024

A351549 Numbers k for which k * gcd(sigma(k), A019565(k)) is equal to sigma(k) * gcd(k, A019565(k)).

Original entry on oeis.org

1, 1456, 15480, 114660, 2244600, 3894768, 25108200, 27052704, 65021040, 112402080, 1973921400
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2022

Keywords

Comments

Numbers k such that their abundancy index [sigma(k)/k] is equal to A351557(k)/A351556(k).
Question: If the above ratio is neither 1 nor 2, must it then be > 2? Are all even terms abundant?
a(12) > 2281701376 if it exists.

Crossrefs

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    isA351549(n) = { my(s=sigma(n), z=A019565(n)); (n*gcd(s,z))==(s*gcd(n,z)); };

A353365 Numbers k such that the odd part of sigma(sigma(k)) is equal to the odd part of sigma(k).

Original entry on oeis.org

1, 5, 12, 427, 9120, 9180, 9504, 9720, 9960, 10296, 10620, 10740, 10824, 11070, 11310, 11480, 11484, 11556, 11628, 11748, 11934, 11960, 12024, 12036, 12072, 12084, 12376, 12460, 12510, 12570, 12640, 12924, 12980, 13000, 13216, 13340, 13554, 13804, 13806, 13962, 13984, 14022, 14056, 14094, 14178, 14212, 14336, 14380
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2022

Keywords

Comments

Numbers k such that sigma(sigma(k)) = 2^e * sigma(k), for some e >= 0.
Numbers k such that sigma(k) is in A336702.
Numbers k for which A000265(A051027(k)) = A161942(k).
If there existed any hypothetical 3-perfect number (A005820) of the form x = 4u+2 and not divisible by 3, then x would be also included in this sequence, as then sigma(sigma(x)) = 12*x = 4*sigma(x). Such x would be also a term of A349745 and of A351458, and x/2 would be a rare odd term of A000396, and also in A336702. See also the diagram in A347392.

Crossrefs

Programs

A351548 a(n) = A349745(n) divided by 2 if it is even, and 0 if A349745(n) is odd.

Original entry on oeis.org

0, 60, 108, 336, 1232, 11088, 114240, 261888, 320320, 418880, 2790720, 2882880, 3769920, 6499584, 9801792, 16930368, 19171152, 35672000, 47736000, 51068160, 98654400, 110046720, 172540368, 229909120, 403504640, 487788480, 738152448, 755415680, 886792320, 1960686000, 2070484416, 2339064000, 2889432000
Offset: 1

Views

Author

Antti Karttunen, Feb 18 2022

Keywords

Comments

Questions: Are all nonzero terms abundant (in A005101)? Are all terms even? Could either be proved? See also comments in A351538 and in A351549.
The terms a(2) .. a(52) are all also practical (A005153) and Zumkeller (A083207). - Antti Karttunen, Dec 05 2024

Crossrefs

Cf. A005101, A005153, A083207, A326051 (all six known terms are present here), A329963, A349169, A349745, A351458, A351459, A351538.
Cf. also A351549.

Programs

Formula

a(n) = 0 if A349745(n) is odd, a(n) = A349745(n)/2 otherwise.

A371082 Composite numbers for which A324644(n)/A324198(n) = 2 and sigma(n) == 2 (mod 4).

Original entry on oeis.org

153, 477, 637, 909, 1017, 1233, 1557, 2097, 3577, 4753, 9457, 10693, 10933, 12393, 13357, 14013, 15337, 17629, 20817, 21097, 21217, 22021, 26353, 29449, 30037, 30717, 31117, 31149, 31797, 32013, 32229, 32337, 32481, 32977, 35557, 35917, 38637, 38725, 41797, 42237, 50029, 53557, 56497, 56677, 56953, 58621, 59437, 60309
Offset: 1

Views

Author

Antti Karttunen, Mar 10 2024

Keywords

Crossrefs

Intersection of A191218 and A364286.
Apparently also the intersection of A228058 and A364286.

Programs

  • Mathematica
    f[x_] := Block[{m, i, n = x, p}, m = i = 1; While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m]; Select[Select[Range[2^16], CompositeQ], GCD[#2, #3]/GCD[#1, #3] == Mod[#2, 4] == 2 & @@ {#, DivisorSigma[1, #], f[#]} &] (* Michael De Vlieger, Mar 10 2024 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA371082(n) = if(isprime(n) || (2!=(sigma(n)%4)), 0, my(u=A276086(n)); (gcd(sigma(n),u)==2*gcd(n,u)));

A351252 a(n) = sigma(n) * A276086(n), pointwise product of the sum of divisors function and the primorial base exp-function.

Original entry on oeis.org

2, 9, 24, 63, 108, 60, 80, 225, 390, 810, 1080, 700, 700, 1800, 3600, 6975, 8100, 4875, 5000, 15750, 24000, 40500, 54000, 37500, 38750, 78750, 150000, 315000, 337500, 504, 448, 1323, 2016, 3402, 6048, 3185, 2660, 6300, 11760, 28350, 26460, 16800, 15400, 44100, 81900, 113400, 151200, 108500, 99750, 244125, 378000
Offset: 1

Views

Author

Antti Karttunen, Feb 17 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Block[{i = 1, m = 1, n = #, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; DivisorSigma[1, #]*m] &, 51] (* Michael De Vlieger, Feb 17 2022, after Jean-François Alcover at A276086 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A351252(n) = (sigma(n) * A276086(n));

Formula

a(n) = A000203(n) * A276086(n).
Showing 1-10 of 13 results. Next