A350837
Number of integer partitions of n with no adjacent parts of quotient 2.
Original entry on oeis.org
1, 1, 2, 2, 4, 5, 7, 10, 14, 18, 24, 31, 41, 53, 70, 87, 112, 140, 178, 221, 277, 344, 428, 526, 648, 792, 971, 1180, 1436, 1738, 2103, 2533, 3049, 3660, 4387, 5242, 6259, 7450, 8860, 10511, 12453, 14723, 17387, 20489, 24121, 28343, 33269, 38982, 45632, 53327
Offset: 0
The a(1) = 1 through a(7) = 10 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (111) (22) (32) (33) (43)
(31) (41) (51) (52)
(1111) (311) (222) (61)
(11111) (411) (322)
(3111) (331)
(111111) (511)
(4111)
(31111)
(1111111)
The sets version (subsets of prescribed maximum) is
A045691.
These partitions are ranked by
A350838.
Cf.
A000070,
A003000,
A003114, `
A003242,
A051424, `
A101417,
A120641,
A154402,
A305148,
A323093,
A323094,
A342095,
A350839.
-
Table[Length[Select[IntegerPartitions[n], FreeQ[Divide@@@Partition[#,2,1],2]&]],{n,0,15}]
A350838
Heinz numbers of partitions with no adjacent parts of quotient 2.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83
Offset: 1
The terms and their prime indices begin:
1: {} 19: {8} 38: {1,8}
2: {1} 20: {1,1,3} 39: {2,6}
3: {2} 22: {1,5} 40: {1,1,1,3}
4: {1,1} 23: {9} 41: {13}
5: {3} 25: {3,3} 43: {14}
7: {4} 26: {1,6} 44: {1,1,5}
8: {1,1,1} 27: {2,2,2} 45: {2,2,3}
9: {2,2} 28: {1,1,4} 46: {1,9}
10: {1,3} 29: {10} 47: {15}
11: {5} 31: {11} 49: {4,4}
13: {6} 32: {1,1,1,1,1} 50: {1,3,3}
14: {1,4} 33: {2,5} 51: {2,7}
15: {2,3} 34: {1,7} 52: {1,1,6}
16: {1,1,1,1} 35: {3,4} 53: {16}
17: {7} 37: {12} 55: {3,5}
The sets version (subsets of prescribed maximum) is counted by
A045691.
These partitions are counted by
A350837.
The strict case is counted by
A350840.
A000045 = sets containing n with all differences > 2.
Cf.
A000302,
A001105,
A003000,
A018819,
A094537,
A120641,
A154402,
A319613,
A323093,
A337135,
A342097,
A342095.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],And@@Table[FreeQ[Divide@@@Partition[primeptn[#],2,1],2],{i,2,PrimeOmega[#]}]&]
A352129
Number of strict integer partitions of n with as many even conjugate parts as odd conjugate parts.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 3, 5, 5, 6, 6, 9, 8, 10, 12, 13, 15, 17, 20, 20, 26, 26, 32, 35, 39, 44, 50, 55, 61, 71, 76, 87, 96, 108, 117, 135, 145, 164, 181, 200, 222, 246, 272, 298, 334, 363, 404, 443
Offset: 0
The a(n) strict partitions for selected n:
n = 3 13 15 18 20 22
------------------------------------------------------------------
(2,1) (6,5,2) (10,5) (12,6) (12,7,1) (12,8,2)
(6,4,2,1) (6,4,3,2) (8,7,3) (8,5,4,3) (8,6,5,3)
(6,5,3,1) (8,5,3,2) (8,6,4,2) (8,7,5,2)
(8,6,3,1) (8,7,4,1) (12,7,2,1)
(8,6,3,2,1) (8,6,4,3,1)
(8,7,4,2,1)
A130780 counts partitions with no more even than odd parts, strict
A239243.
A171966 counts partitions with no more odd than even parts, strict
A239240.
There are four statistics:
There are four other pairings of statistics:
There are three double-pairings of statistics:
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[conj[#],?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
A350840
Number of strict integer partitions of n with no adjacent parts of quotient 2.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 2, 4, 5, 6, 7, 8, 10, 13, 17, 19, 22, 25, 30, 35, 43, 52, 60, 70, 81, 93, 106, 122, 142, 166, 190, 216, 249, 287, 325, 371, 420, 479, 543, 617, 695, 784, 888, 1000, 1126, 1266, 1420, 1594, 1792, 2008, 2247, 2514, 2809, 3135, 3496, 3891, 4332
Offset: 0
The a(1) = 1 through a(13) = 13 partitions (A..D = 10..13):
1 2 3 4 5 6 7 8 9 A B C D
31 32 51 43 53 54 64 65 75 76
41 52 62 72 73 74 93 85
61 71 81 82 83 A2 94
431 432 91 92 B1 A3
531 532 A1 543 B2
541 641 651 C1
731 732 643
741 652
831 751
832
931
5431
The version for subsets of prescribed maximum is
A045691.
Versions for prescribed quotients:
A000045 = sets containing n with all differences > 2.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Table[#[[i-1]]/#[[i]]!=2,{i,2,Length[#]}]&]],{n,0,30}]
A350845
Heinz numbers of integer partitions with at least two adjacent parts of quotient 2.
Original entry on oeis.org
6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 130, 132, 133, 138, 144, 147, 150, 156, 162, 168, 174, 180, 186, 189, 192, 195, 198, 204, 210, 216, 222, 228, 231, 234, 240, 246, 252, 258, 260, 264, 266, 270
Offset: 1
The terms and corresponding partitions begin:
6: (2,1)
12: (2,1,1)
18: (2,2,1)
21: (4,2)
24: (2,1,1,1)
30: (3,2,1)
36: (2,2,1,1)
42: (4,2,1)
48: (2,1,1,1,1)
54: (2,2,2,1)
60: (3,2,1,1)
63: (4,2,2)
65: (6,3)
66: (5,2,1)
72: (2,2,1,1,1)
78: (6,2,1)
84: (4,2,1,1)
90: (3,2,2,1)
96: (2,1,1,1,1,1)
The strict complement is counted by
A350840.
These partitions are counted by
A350846.
A000045 = sets containing n with all differences > 2.
A325160 ranks strict partitions with no successions, counted by
A003114.
Cf.
A000929,
A001105,
A018819,
A045690,
A045691,
A094537,
A154402,
A319613,
A323093,
A337135,
A342094,
A342095,
A342098,
A342191.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],MemberQ[Divide@@@Partition[primeptn[#],2,1],2]&]
A352128
Number of strict integer partitions of n with (1) as many even parts as odd parts, and (2) as many even conjugate parts as odd conjugate parts.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 2, 0, 2, 2, 3, 0, 3, 0, 2, 2, 5, 2, 5, 4, 6, 7, 7, 8, 8, 9, 9, 13, 9, 14, 12, 20, 13, 25, 17, 33, 23, 40, 26, 50, 33, 59, 39, 68, 45, 84, 58, 92, 70, 115, 88, 132, 109, 156, 139, 182, 172, 212, 211
Offset: 0
The a(n) strict partitions for selected n:
n = 3 18 22 28 31 32
-----------------------------------------------------------------------
(2,1) (8,5,3,2) (8,6,5,3) (12,7,5,4) (10,7,5,4,3,2) (12,8,7,5)
(8,6,3,1) (8,7,5,2) (12,8,5,3) (10,7,6,5,2,1) (12,9,7,4)
(12,7,2,1) (12,9,5,2) (10,8,5,4,3,1) (16,9,4,3)
(16,9,2,1) (10,9,6,3,2,1) (12,10,7,3)
(12,10,5,1) (12,11,7,2)
(16,11,4,1)
A130780 counts partitions with no more even than odd parts, strict
A239243.
A171966 counts partitions with no more odd than even parts, strict
A239240.
There are four statistics:
There are four other pairings of statistics:
There are two other double-pairings of statistics:
Cf.
A000070,
A014105,
A088218,
A098123,
A195017,
A236559,
A236914,
A241638,
A325700,
A350839,
A350941.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[#,?OddQ]==Count[#,?EvenQ]&&Count[conj[#],?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
Comments