cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A363128 Number of integer partitions of n with more than one non-co-mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 6, 9, 18, 25, 44, 60, 96, 122, 188, 243, 344, 442, 615, 769, 1047, 1308, 1722, 2150, 2791, 3430, 4405, 5401, 6803, 8326, 10408, 12608, 15641, 18906, 23179, 27935, 34061, 40778, 49451, 59038, 71060, 84604, 101386, 120114, 143358
Offset: 0

Views

Author

Gus Wiseman, May 18 2023

Keywords

Comments

We define a non-co-mode in a multiset to be an element that appears more times than at least one of the others. For example, the non-co-modes in {a,a,b,b,b,c,d,d,d} are {a,b,d}.

Examples

			The a(9) = 1 through a(12) = 9 partitions:
  (32211)  (33211)   (33221)    (43311)
           (42211)   (52211)    (44211)
           (322111)  (322211)   (62211)
                     (332111)   (422211)
                     (422111)   (522111)
                     (3221111)  (3222111)
                                (3321111)
                                (4221111)
                                (32211111)
		

Crossrefs

For parts instead of multiplicities we have
For middles instead of non-co-modes we have A238479, complement A238478.
For modes instead of non-co-modes we have A362607, complement A362608.
For co-modes instead of non-co-modes we have A362609, complement A362610.
For non-modes instead of non-co-modes we have A363124, complement A363125.
The complement is counted by A363129.
A000041 counts integer partitions.
A008284/A058398 count partitions by length/mean.
A362611 counts modes in prime factorization, triangle A362614.
A362613 counts co-modes in prime factorization, triangle A362615.
A363127 counts non-modes in prime factorization, triangle A363126.
A363131 counts non-co-modes in prime factorization, triangle A363130.

Programs

  • Mathematica
    ncomsi[ms_]:=Select[Union[ms],Count[ms,#]>Min@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],Length[ncomsi[#]]>1&]],{n,0,30}]

A363129 Number of integer partitions of n with a unique non-co-mode.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 3, 9, 12, 18, 24, 37, 43, 64, 81, 99, 129, 162, 201, 247, 303, 364, 457, 535, 653, 765, 943, 1085, 1315, 1517, 1830, 2096, 2516, 2877, 3432, 3881, 4622, 5235, 6189, 7003, 8203, 9261, 10859, 12199, 14216, 15985, 18544, 20777, 24064, 26897
Offset: 0

Views

Author

Gus Wiseman, May 18 2023

Keywords

Comments

We define a non-co-mode in a multiset to be an element that appears more times than at least one of the others. For example, the non-co-modes in {a,a,b,b,b,c,d,d,d} are {a,b,d}.

Examples

			The a(4) = 1 through a(9) = 18 partitions:
  (211)  (221)   (411)    (322)     (332)      (441)
         (311)   (3111)   (331)     (422)      (522)
         (2111)  (21111)  (511)     (611)      (711)
                          (2221)    (3221)     (3222)
                          (3211)    (4211)     (3321)
                          (4111)    (5111)     (4221)
                          (22111)   (22211)    (4311)
                          (31111)   (32111)    (5211)
                          (211111)  (41111)    (6111)
                                    (221111)   (22221)
                                    (311111)   (33111)
                                    (2111111)  (42111)
                                               (51111)
                                               (321111)
                                               (411111)
                                               (2211111)
                                               (3111111)
                                               (21111111)
		

Crossrefs

For parts instead of multiplicities we have A002133.
For middles instead of non-co-modes we have A238478, complement A238479.
For modes instead of non-co-modes we have A362608, complement A362607.
For co-modes instead of non-co-modes we have A362610, complement A362609.
For non-modes instead of non-co-modes we have A363125, complement A363124.
The complement is counted by A363128.
A000041 counts integer partitions.
A008284/A058398 count partitions by length/mean.
A362611 counts modes in prime factorization, triangle A362614.
A362613 counts co-modes in prime factorization, triangle A362615.
A363127 counts non-modes in prime factorization, triangle A363126.
A363131 counts non-co-modes in prime factorization, triangle A363130.

Programs

  • Mathematica
    ncomsi[ms_]:=Select[Union[ms],Count[ms,#]>Min@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],Length[ncomsi[#]]==1&]],{n,0,30}]

A363130 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k non-co-modes, all 0's removed.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 4, 3, 8, 3, 6, 9, 10, 12, 11, 18, 1, 15, 24, 3, 13, 37, 6, 25, 43, 9, 19, 64, 18, 29, 81, 25, 33, 99, 44, 42, 129, 59, 1, 39, 162, 93, 3, 62, 201, 116, 6, 55, 247, 175, 13, 81, 303, 224, 19, 84, 364, 309, 35, 103, 457, 389, 53, 105, 535, 529, 86
Offset: 0

Views

Author

Gus Wiseman, May 18 2023

Keywords

Comments

We define a non-co-mode in a multiset to be an element that appears more times than at least one of the others. For example, the non-co-modes in {a,a,b,b,b,c,d,d,d} are {a,b,d}.

Examples

			Triangle begins:
   1
   1
   2
   3
   4   1
   4   3
   8   3
   6   9
  10  12
  11  18   1
  15  24   3
  13  37   6
  25  43   9
  19  64  18
  29  81  25
  33  99  44
Row n = 9 counts the following partitions:
  (9)          (441)       (32211)
  (54)         (522)
  (63)         (711)
  (72)         (3222)
  (81)         (3321)
  (333)        (4221)
  (432)        (4311)
  (531)        (5211)
  (621)        (6111)
  (222111)     (22221)
  (111111111)  (33111)
               (42111)
               (51111)
               (321111)
               (411111)
               (2211111)
               (3111111)
               (21111111)
		

Crossrefs

Row sums are A000041.
Row lengths are approximately A000196.
Column k = 0 is A047966.
For modes instead of non-co-modes we have A362614, rank stat A362611.
For co-modes instead of non-co-modes we have A362615, rank stat A362613.
For non-modes instead of non-co-modes we have A363126, rank stat A363127.
Columns k > 1 sum to A363128.
Column k = 1 is A363129.
This rank statistic (number of non-co-modes) is A363131.
A008284/A058398 count partitions by length/mean.
A275870 counts collapsible partitions.
A353836 counts partitions by number of distinct run-sums.
A359893 counts partitions by median.

Programs

  • Mathematica
    ncomsi[ms_]:=Select[Union[ms],Count[ms,#]>Min@@Length/@Split[ms]&];
    DeleteCases[Table[Length[Select[IntegerPartitions[n] , Length[ncomsi[#]]==k&]],{n,0,15},{k,0,Sqrt[n]}],0,{2}]

A362051 Number of integer partitions of 2n without a nonempty initial consecutive subsequence summing to n.

Original entry on oeis.org

1, 1, 2, 6, 11, 27, 44, 93, 149, 271, 432, 744, 1109, 1849, 2764, 4287, 6328, 9673, 13853, 20717, 29343, 42609, 60100, 85893, 118475, 167453, 230080, 318654, 433763, 595921, 800878, 1090189, 1456095, 1957032, 2600199, 3465459, 4558785, 6041381, 7908681
Offset: 0

Views

Author

Gus Wiseman, Apr 24 2023

Keywords

Comments

Even bisection of A362558.
a(0) = 1; a(n) = A000041(2n) - A322439(n). - Alois P. Heinz, Apr 27 2023

Examples

			The a(1) = 1 through a(4) = 11 partitions:
  (2)  (4)   (6)     (8)
       (31)  (42)    (53)
             (51)    (62)
             (222)   (71)
             (411)   (332)
             (2211)  (521)
                     (611)
                     (3221)
                     (3311)
                     (5111)
                     (32111)
The partition y = (3,2,1,1,1) has nonempty initial consecutive subsequences (3,2,1,1,1), (3,2,1,1), (3,2,1), (3,2), (3), with sums 8, 7, 6, 5, 3. Since 4 is missing, y is counted under a(4).
		

Crossrefs

The version for compositions is A000302, bisection of A213173.
The complement is counted by A322439.
Even bisection of A362558.
A000041 counts integer partitions, strict A000009.
A304442 counts partitions with all equal run-sums.
A325347 counts partitions with integer median, complement A307683.
A353836 counts partitions by number of distinct run-sums.
A359893/A359901/A359902 count partitions by median.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[2n],!MemberQ[Accumulate[#],n]&]],{n,0,15}]

A354583 Heinz numbers of non-rucksack partitions: not every prime-power divisor has a different sum of prime indices.

Original entry on oeis.org

12, 24, 36, 40, 48, 60, 63, 72, 80, 84, 96, 108, 112, 120, 126, 132, 144, 156, 160, 168, 180, 189, 192, 200, 204, 216, 224, 228, 240, 252, 264, 276, 280, 288, 300, 312, 315, 320, 324, 325, 336, 348, 351, 352, 360, 372, 378, 384, 396, 400, 408, 420, 432, 440
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The term rucksack is short for run-knapsack.

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   24: {1,1,1,2}
   36: {1,1,2,2}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   60: {1,1,2,3}
   63: {2,2,4}
   72: {1,1,1,2,2}
   80: {1,1,1,1,3}
   84: {1,1,2,4}
   96: {1,1,1,1,1,2}
  108: {1,1,2,2,2}
  112: {1,1,1,1,4}
  120: {1,1,1,2,3}
  126: {1,2,2,4}
  132: {1,1,2,5}
  144: {1,1,1,1,2,2}
  156: {1,1,2,6}
  160: {1,1,1,1,1,3}
  168: {1,1,1,2,4}
For example, {2,2,2,3,3} does not have distinct run-sums because 2+2+2 = 3+3, so 675 is in the sequence.
		

Crossrefs

Knapsack partitions are counted by A108917, ranked by A299702.
Non-knapsack partitions are ranked by A299729.
The non-partial version is A353839, complement A353838 (counted by A353837).
The complement is A353866, counted by A353864.
The complete complement is A353867, counted by A353865.
The complement for compositions is counted by A354580.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A073093 counts prime-power divisors.
A300273 ranks collapsible partitions, counted by A275870.
A304442 counts partitions with all equal run-sums, ranked by A353833.
A333223 ranks knapsack compositions, counted by A325676.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353861 counts distinct partial run-sums of prime indices.
A354584 lists run-sums of prime indices, rows ranked by A353832.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!UnsameQ@@Total/@primeMS/@Select[Divisors[#],PrimePowerQ]&]
Previous Showing 11-15 of 15 results.