cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A354907 Number of distinct sums of contiguous constant subsequences (partial runs) of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 4, 1, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 5, 1, 2, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 4, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 4, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 2, 3, 3, 4, 2, 3, 2, 3, 3, 4, 3
Offset: 0

Views

Author

Gus Wiseman, Jun 23 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			Composition number 981 in standard order is (1,1,1,2,2,2,1), with partial runs (1), (2), (1,1), (2,2), (1,1,1), (2,2,2), with distinct sums {1,2,3,4,6}, so a(981) = 5.
		

Crossrefs

Positions of 1's are A000051.
Positions of first appearances are A000079.
The standard compositions used here are A066099, run-sums A353847/A353932.
If we allow any subsequence we get A334968.
The case of full runs is A353849, firsts A246534.
A version for nonempty partitions is A353861, full A353835.
Counting all distinct runs (instead of their distinct sums) gives A354582.
A124767 counts runs in standard compositions.
A238279 and A333755 count compositions by number of runs.
A330036 counts distinct partial runs of prime indices, full A005811.
A351014 counts distinct runs of standard compositions, firsts A351015.
A353853-A353859 pertain to composition run-sum trajectory.
A353860 counts collapsible compositions.
A354584 lists run-sums of prime indices, rows ranked by A353832.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    pre[y_]:=NestWhileList[Most,y,Length[#]>1&];
    Table[Length[Union[Total/@Join@@pre/@Split[stc[n]]]],{n,0,100}]

A353844 Starting with the multiset of prime indices of n, repeatedly take the multiset of run-sums until you reach a squarefree number. This number is prime (or 1) iff n belongs to the sequence.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 40, 41, 43, 47, 49, 53, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 109, 112, 113, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 169, 173, 179
Offset: 1

Views

Author

Gus Wiseman, May 26 2022

Keywords

Comments

The run-sums transformation is described by Kimberling at A237685 and A237750.
The runs of a sequence are its maximal consecutive constant subsequences. For example, the runs of {1,1,1,2,2,3,4} are {1,1,1}, {2,2}, {3}, {4}, with sums {3,3,4,4}.
Note that the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so this sequence lists Heinz numbers of partitions whose run-sum trajectory reaches an empty set or singleton.

Examples

			The terms together with their prime indices begin:
      1: {}            25: {3,3}           64: {1,1,1,1,1,1}
      2: {1}           27: {2,2,2}         67: {19}
      3: {2}           29: {10}            71: {20}
      4: {1,1}         31: {11}            73: {21}
      5: {3}           32: {1,1,1,1,1}     79: {22}
      7: {4}           37: {12}            81: {2,2,2,2}
      8: {1,1,1}       40: {1,1,1,3}       83: {23}
      9: {2,2}         41: {13}            84: {1,1,2,4}
     11: {5}           43: {14}            89: {24}
     12: {1,1,2}       47: {15}            97: {25}
     13: {6}           49: {4,4}          101: {26}
     16: {1,1,1,1}     53: {16}           103: {27}
     17: {7}           59: {17}           107: {28}
     19: {8}           61: {18}           109: {29}
     23: {9}           63: {2,2,4}        112: {1,1,1,1,4}
The trajectory 60 -> 45 -> 35 ends in a nonprime number 35, so 60 is not in the sequence.
The trajectory 84 -> 63 -> 49 -> 19 ends in a prime number 19, so 84 is in the sequence.
		

Crossrefs

This sequence is a subset of A300273, counted by A275870.
The version for compositions is A353857, counted by A353847.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A304442 counts partitions with all equal run-sums.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A325268 counts partitions by omicron, rank statistic A304465.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run-sums, nonprime A353834.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353840-A353846 pertain to partition run-sum trajectory.
A353853-A353859 pertain to composition run-sum trajectory.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    ope[n_]:=Times@@Prime/@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k];
    Select[Range[100],#==1||PrimeQ[NestWhile[ope,#,!SquareFreeQ[#]&]]&]

A353845 Number of integer partitions of n such that if you repeatedly take the multiset of run-sums (or condensation), you eventually reach an empty set or singleton.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 5, 2, 8, 3, 5, 2, 15, 2, 5, 4, 18, 2, 13, 2, 14, 4, 5, 2, 62, 3, 5, 5, 14, 2, 18, 2, 48, 4, 5, 4, 71, 2, 5, 4, 54, 2, 18, 2, 14, 10, 5, 2, 374, 3, 9, 4, 14, 2, 37, 4, 54, 4, 5, 2, 131
Offset: 0

Views

Author

Gus Wiseman, May 26 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The a(1) = 1 through a(8) = 8 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
                    (211)            (222)                (422)
                    (1111)           (3111)               (2222)
                                     (111111)             (4211)
                                                          (41111)
                                                          (221111)
                                                          (11111111)
For example, the partition (3,2,2,2,1,1,1) has trajectory: (1,1,1,2,2,2,3) -> (3,3,6) -> (6,6) -> (12), so is counted under a(12).
		

Crossrefs

Dominated by A018818 (partitions into divisors).
The version for compositions is A353858.
A275870 counts collapsible partitions, ranked by A300273.
A304442 counts partitions with all equal run-sums, ranked by A353833.
A325268 counts partitions by omicron, rank statistic A304465.
A353832 represents the operation of taking run-sums of a partition.
A353837 counts partitions with all distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353847-A353859 pertain to composition run-sum trajectory.
A353864 counts rucksack partitions, ranked by A353866.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[NestWhile[Sort[Total/@Split[#]]&,#,!UnsameQ@@#&]]<=1&]],{n,0,30}]

A353856 Triangle read by rows where T(n,k) is the number of integer compositions of n with run-sum trajectory (condensation) ending in a composition of length k.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 0, 2, 2, 0, 0, 5, 2, 1, 0, 0, 2, 12, 2, 0, 0, 0, 8, 10, 12, 2, 0, 0, 0, 2, 32, 23, 6, 1, 0, 0, 0, 20, 26, 51, 28, 3, 0, 0, 0, 0, 5, 66, 109, 52, 22, 2, 0, 0, 0, 0, 8, 108, 144, 188, 53, 10, 1, 0, 0, 0, 0, 2, 134, 358, 282, 196, 48, 4, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Jun 01 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sums transformation (or condensation, represented by A353847) until an anti-run is reached. For example, the trajectory (2,1,1,3,1,1,2,1,1,2,1) -> (2,2,3,2,2,2,2,1) -> (4,3,8,1) is counted under T(15,4).

Examples

			Triangle begins:
   1
   0   1
   0   2   0
   0   2   2   0
   0   5   2   1   0
   0   2  12   2   0   0
   0   8  10  12   2   0   0
   0   2  32  23   6   1   0   0
   0  20  26  51  28   3   0   0   0
   0   5  66 109  52  22   2   0   0   0
   0   8 108 144 188  53  10   1   0   0   0
   0   2 134 358 282 196  48   4   0   0   0   0
For example, row n = 6 counts the following compositions:
  .  (6)       (15)     (123)    (1212)  .  .
     (33)      (24)     (132)    (2121)
     (222)     (42)     (141)
     (1113)    (51)     (213)
     (2112)    (114)    (231)
     (3111)    (411)    (312)
     (11211)   (1122)   (321)
     (111111)  (2211)   (1131)
               (11112)  (1221)
               (21111)  (1311)
                        (11121)
                        (12111)
		

Crossrefs

Row sums are A011782.
Row-lengths without zeros appear to be A131737.
The version for partitions is A353843.
The length of the trajectory is A353854, firsts A072639, partitions A353841.
The last part of the same trajectory is A353855.
Column k = 1 is A353858.
A066099 lists compositions in standard order.
A318928 gives runs-resistance of binary expansion.
A325268 counts partitions by omicron, rank statistic A304465.
A333489 ranks anti-runs, counted by A003242 (complement A261983).
A333627 ranks the run-lengths of standard compositions.
A353840-A353846 pertain to partition run-sum trajectory.
A353847 represents the run-sums of a composition, partitions A353832.
A353853-A353859 pertain to composition run-sum trajectory.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],Length[FixedPoint[Total/@Split[#]&,#]]==k&]],{n,0,15},{k,0,n}]

A354581 Numbers k such that the k-th composition in standard order is rucksack, meaning every distinct partial run has a different sum.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 44, 45, 48, 49, 50, 51, 52, 53, 54, 56, 57, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 80, 81, 82, 84, 85, 86, 88
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2022

Keywords

Comments

We define a partial run of a sequence to be any contiguous constant subsequence.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The term rucksack is short for run-knapsack.

Examples

			The terms together with their corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   4: (3)
   5: (2,1)
   6: (1,2)
   7: (1,1,1)
   8: (4)
   9: (3,1)
  10: (2,2)
  12: (1,3)
  13: (1,2,1)
  15: (1,1,1,1)
Missing are:
  11: (2,1,1)
  14: (1,1,2)
  23: (2,1,1,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  30: (1,1,1,2)
  39: (3,1,1,1)
  43: (2,2,1,1)
  46: (2,1,1,2)
		

Crossrefs

The version for binary indices is A000225.
Counting distinct sums of full runs gives A353849, partitions A353835.
For partitions we have A353866, counted by A353864, complement A354583.
These compositions are counted by A354580.
Counting distinct sums of partial runs gives A354907, partitions A353861.
A066099 lists all compositions in standard order.
A124767 counts runs in standard compositions.
A124771 counts distinct contiguous subsequences, non-contiguous A334299.
A238279 and A333755 count compositions by number of runs.
A351014 counts distinct runs in standard compositions, firsts A351015.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353853-A353859 pertain to composition run-sum trajectory.
A353932 lists run-sums of standard compositions, rows ranked by A353847.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Total/@Union@@Subsets/@Split[stc[#]]&]

A353843 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with partition run-sum trajectory ending in a partition of length k. All zeros removed.

Original entry on oeis.org

1, 1, 2, 2, 1, 4, 1, 2, 5, 5, 5, 1, 2, 12, 1, 8, 11, 3, 3, 19, 8, 5, 27, 9, 1, 2, 34, 19, 1, 15, 26, 34, 2, 2, 49, 45, 5, 5, 68, 48, 14, 4, 58, 98, 15, 1, 18, 76, 105, 31, 1, 2, 88, 159, 46, 2, 13, 98, 191, 79, 4, 2, 114, 261, 105, 8, 14, 148, 282, 164, 19
Offset: 0

Views

Author

Gus Wiseman, Jun 04 2022

Keywords

Comments

The partition run-sum trajectory is obtained by repeatedly taking the run-sums until a strict partition is reached. For example, the trajectory of y = (3,2,1,1,1) is (3,2,1,1,1) -> (3,3,2) -> (6,2), so y is counted under T(8,2).

Examples

			Triangle begins:
   1
   1
   2
   2  1
   4  1
   2  5
   5  5  1
   2 12  1
   8 11  3
   3 19  8
   5 27  9  1
   2 34 19  1
  15 26 34  2
   2 49 45  5
   5 68 48 14
   4 58 98 15  1
For example, row n = 8 counts the following partitions:
  (8)         (53)       (431)
  (44)        (62)       (521)
  (422)       (71)       (3221)
  (2222)      (332)
  (4211)      (611)
  (41111)     (3311)
  (221111)    (5111)
  (11111111)  (22211)
              (32111)
              (311111)
              (2111111)
		

Crossrefs

Row sums are A000041.
Row-lengths are A003056.
The last part of the same trajectory is A353842.
Column k = 1 is A353845, compositions A353858.
The length of the trajectory is A353846.
The version for compositions is A353856.
A275870 counts collapsible partitions, ranked by A300273.
A304442 counts partitions with constant run-sums, ranked by A353833/A353834.
A325268 counts partitions by omicron, rank statistic A304465.
A353837 counts partitions with all distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353847 represents the run-sums of a composition, partitions A353832.
A353864 counts rucksack partitions, ranked by A353866.
A353865 counts perfect rucksack partitions, ranked by A353867.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[FixedPoint[Sort[Total/@Split[#]]&,#]]==k&]],{n,0,15},{k,0,n}]

A353857 Numbers k such that the k-th composition in standard order has run-sum trajectory ending in a singleton.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 31, 32, 36, 39, 42, 46, 59, 60, 63, 64, 127, 128, 136, 138, 139, 142, 143, 168, 170, 174, 175, 184, 186, 187, 232, 238, 239, 248, 250, 251, 255, 256, 292, 316, 487, 511, 512, 528, 543, 682, 750, 955, 1008, 1023, 1024, 2047
Offset: 1

Views

Author

Gus Wiseman, Jun 01 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353847) until the rank of an anti-run is reached. For example, the trajectory 11 -> 10 -> 8 corresponds to the trajectory (2,1,1) -> (2,2) -> (4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
   1:        1  (1)
   2:       10  (2)
   3:       11  (1,1)
   4:      100  (3)
   7:      111  (1,1,1)
   8:     1000  (4)
  10:     1010  (2,2)
  11:     1011  (2,1,1)
  14:     1110  (1,1,2)
  15:     1111  (1,1,1,1)
  16:    10000  (5)
  31:    11111  (1,1,1,1,1)
  32:   100000  (6)
  36:   100100  (3,3)
  39:   100111  (3,1,1,1)
  42:   101010  (2,2,2)
  46:   101110  (2,1,1,2)
  59:   111011  (1,1,2,1,1)
  60:   111100  (1,1,1,3)
  63:   111111  (1,1,1,1,1,1)
		

Crossrefs

The version for partitions is A353844.
The trajectory length is A353854, firsts A072639, for partitions A353841.
The last part of the trajectory is A353855, for partitions A353842.
These compositions are counted by A353858.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order.
A318928 gives runs-resistance of binary expansion.
A325268 counts partitions by omicron, rank statistic A304465.
A333627 ranks the run-lengths of standard compositions.
A351014 counts distinct runs in standard compositions, firsts A351015.
A353840-A353846 pertain to partition run-sum trajectory.
A353847 represents composition run-sum transformation, partitions A353832.
A353853-A353859 pertain to composition run-sum trajectory.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[100],Length[FixedPoint[Total/@Split[#]&,stc[#]]]==1&]

A354582 Number of distinct contiguous constant subsequences (or partial runs) in the k-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 2, 3, 4, 1, 2, 2, 3, 2, 3, 2, 4, 2, 2, 3, 3, 3, 3, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 2, 3, 5, 2, 2, 3, 3, 3, 3, 2, 4, 3, 3, 4, 3, 4, 4, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 2, 3, 4, 5, 2, 3, 2, 4, 3, 4, 3
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition number 981 in standard order is (1,1,1,2,2,2,1), with partial runs (1), (2), (1,1), (2,2), (1,1,1), (2,2,2), so a(981) = 6.
As a triangle:
  1
  1 2
  1 2 2 3
  1 2 2 3 2 2 3 4
  1 2 2 3 2 3 2 4 2 2 3 3 3 3 4 5
  1 2 2 3 2 3 3 4 2 3 3 4 3 2 3 5 2 2 3 3 3 3 2 4 3 3 4 3 4 4 5 6
		

Crossrefs

The version for partitions is A001222, full A001221.
If we allow any constant subsequence we get A063787.
If we allow any contiguous subsequence we get A124771.
Positions of first appearances are A126646.
The version for binary indices is A330036, full A005811.
If we allow any subsequence we get A334299.
The full version is A351014, firsts A351015.
The version for run-sums of partitions is A353861, full A353835.
Counting distinct sums of partial runs gives A354907, full A353849.
A066099 lists all compositions in standard order.
A124767 counts runs in standard compositions.
A238279 and A333755 count compositions by number of runs.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353853-A353859 pertain to composition run-sum trajectory.
A353932 lists run-sums of standard compositions, rows ranked by A353847.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    pre[y_]:=NestWhileList[Most,y,Length[#]>1&];
    Table[Length[Union[Join@@pre/@Split[stc[n]]]],{n,0,100}]

A354909 Number of integer compositions of n that are not the run-sums of any other composition.

Original entry on oeis.org

0, 0, 1, 1, 3, 7, 16, 33, 74, 155, 329, 688, 1439, 2975, 6154, 12654, 25964, 53091, 108369, 220643, 448520
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The a(0) = 0 through a(6) = 16 compositions:
  .  .  (11)  (111)  (112)   (113)    (114)
                     (211)   (311)    (411)
                     (1111)  (1112)   (1113)
                             (1121)   (1122)
                             (1211)   (1131)
                             (2111)   (1221)
                             (11111)  (1311)
                                      (2112)
                                      (2211)
                                      (3111)
                                      (11112)
                                      (11121)
                                      (11211)
                                      (12111)
                                      (21111)
                                      (111111)
		

Crossrefs

The version for binary words is A000918, complement A000126.
These compositions are ranked by A354904 = positions of zeros in A354578.
The complement is counted by A354910, ranked by A354912.
A003242 counts anti-run compositions, ranked by A333489.
A238279 and A333755 count compositions by number of runs.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353853-A353859 pertain to composition run-sum trajectory.
A353932 lists run-sums of standard compositions, rows ranked by A353847.

Programs

  • Mathematica
    Table[Length[Complement[Join@@Permutations/@IntegerPartitions[n], Total/@Split[#]&/@Join@@Permutations/@IntegerPartitions[n]]],{n,0,15}]

A354910 Number of compositions of n that are the run-sums of some other composition.

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 16, 31, 54, 101, 183, 336, 609, 1121, 2038, 3730, 6804, 12445, 22703, 41501, 75768
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The a(0) = 0 through a(6) = 16 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)
                (12)  (13)   (14)   (15)
                (21)  (22)   (23)   (24)
                      (31)   (32)   (33)
                      (121)  (41)   (42)
                             (122)  (51)
                             (131)  (123)
                             (212)  (132)
                             (221)  (141)
                                    (213)
                                    (222)
                                    (231)
                                    (312)
                                    (321)
                                    (1212)
                                    (2121)
		

Crossrefs

The version for binary words is A000126, complement A000918
The complement is counted by A354909, ranked by A354904.
These compositions are ranked by A354912 = nonzeros of A354578.
A003242 counts anti-run compositions, ranked by A333489.
A238279 and A333755 count compositions by number of runs.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353853-A353859 pertain to composition run-sum trajectory.
A353932 lists run-sums of standard compositions, rows ranked by A353847.

Programs

  • Mathematica
    Table[Length[Union[Total/@Split[#]&/@ Join@@Permutations/@IntegerPartitions[n]]],{n,0,15}]
Previous Showing 21-30 of 32 results. Next