cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A357705 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 2, 0, 1, 0, 3, 1, 2, 0, 1, 0, 3, 2, 3, 2, 0, 1, 0, 4, 2, 4, 1, 3, 0, 1, 0, 4, 3, 3, 6, 2, 3, 0, 1, 0, 5, 3, 5, 3, 7, 2, 4, 0, 1, 0, 5, 4, 5, 4, 9, 7, 3, 4, 0, 1, 0, 6, 4, 7, 3, 12, 5, 10, 3, 5, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Oct 10 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ...

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  2  0  1
  0  2  2  0  1
  0  3  1  2  0  1
  0  3  2  3  2  0  1
  0  4  2  4  1  3  0  1
  0  4  3  3  6  2  3  0  1
  0  5  3  5  3  7  2  4  0  1
  0  5  4  5  4  9  7  3  4  0  1
  0  6  4  7  3 12  5 10  3  5  0  1
  0  6  5  7  5 10 16  7 11  4  5  0  1
  0  7  5  9  5 14 11 18  7 14  4  6  0  1
Row n = 7 counts the following reversed partitions:
  .  (16)   (25)   (34)       (1123)  (1114)   .  (7)
     (115)  (223)  (1222)             (11113)
     (124)         (111112)           (11122)
     (133)         (1111111)
		

Crossrefs

Row sums are A000041.
First nonzero entry of each row is A004526.
The central column is A357640, half A357639.
For original alternating sum we have A344651, ordered A097805.
The half-alternating version is A357704.
The ordered non-reverse version (compositions) is A357646, half A357645.
The non-reverse version is A357638, half A357637.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357629 gives half-alternating sum of prime indices, skew A357630.
A357633 gives half-alternating sum of Heinz partition, skew A357634.

Programs

  • Mathematica
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[Length[Select[Reverse/@IntegerPartitions[n],skats[#]==k&]],{n,0,11},{k,-n,n,2}]

A357180 First run-length of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 5, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 87 in standard order is (2,2,1,1,1), so a(87) = 2.
		

Crossrefs

See link for sequences related to standard compositions.
For parts instead of run-lengths we have A065120, last A001511.
The version for Heinz numbers of partitions is A067029, last A071178.
This is the first part of row n of A333769.
For minimal instead of first we have A357138, maximal A357137.
The last instead of first run-length is A357181.
A051903 gives maximal part in prime signature.
A061395 gives maximal prime index.
A124767 counts runs in standard compositions.
A286470 gives maximal difference of prime indices.
A333766 gives maximal part of standard compositions, minimal A333768.
A353847 ranks run-sums of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,First[Length/@Split[stc[n]]]],{n,0,100}]

A357138 Minimal run-length of the n-th composition in standard order; a(0) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 18 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 92 in standard order is (2,1,1,3), so a(92) = 1.
		

Crossrefs

See link for more sequences related to standard compositions.
The version for Heinz numbers of partitions is A051904, for parts A055396.
For parts instead of run-length we have A333768, maximal A333766.
The opposite (maximal) version is A357137.
For first instead of minimal we have A357180, last A357181.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,Min[Length/@Split[stc[n]]]],{n,0,100}]

A357181 Last run-length of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 3, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 24 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 87 in standard order is (2,2,1,1,1), so a(87) = 3.
		

Crossrefs

See link for sequences related to standard compositions.
For parts instead of run-lengths we have A001511, first A065120.
For Heinz numbers of partitions we have A071178, first A067029.
This is the last part of row n of A333769.
For maximal instead of last we have A357137, minimal A357138.
The first instead of last run-length is A357180.
A051903 gives maximal part of prime signature.
A061395 gives maximal prime index.
A124767 counts runs in standard compositions.
A286470 gives maximal difference of prime indices.
A333766 gives maximal part of standard composition, minimal A333768.
A353847 ranks run-sums of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,Last[Length/@Split[stc[n]]]],{n,0,100}]

A357847 Number of integer compositions of n whose length is twice their alternating sum.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 3, 1, 8, 11, 15, 46, 59, 127, 259, 407, 888, 1591, 2925, 5896, 10607, 20582, 39446, 73448, 142691, 269777, 513721, 988638, 1876107, 3600313, 6893509, 13165219, 25288200, 48408011, 92824505, 178248758, 341801149, 656641084, 1261298356
Offset: 0

Views

Author

Gus Wiseman, Oct 16 2022

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The a(0) = 1 through a(9) = 15 compositions:
  ()  .  .  (21)  .  (32)  (1131)  (43)  (1142)  (54)
                           (2121)        (1241)  (111141)
                           (3111)        (2132)  (112131)
                                         (2231)  (113121)
                                         (3122)  (114111)
                                         (3221)  (211131)
                                         (4112)  (212121)
                                         (4211)  (213111)
                                                 (311121)
                                                 (312111)
                                                 (411111)
		

Crossrefs

The version for partitions is A357709, ranked by A357848.
A011782 counts compositions.
A025047 counts alternating compositions.
A103919 counts partitions by alternating sum, full triangle A344651.
A357136 counts compositions by alternating sum, full triangle A097805.
A357182 counts compositions w/ length = alternating sum, ranked by A357184.
A357189 counts partitions w/ length = alternating sum, ranked by A357486.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],Length[#]==2ats[#]&]],{n,0,10}]

Extensions

a(21)-a(38) from Alois P. Heinz, Oct 19 2022

A228248 Number of 2n-step lattice paths from (0,0) to (0,0) using steps in {N, S, E, W} starting with East, then always moving straight ahead or turning left.

Original entry on oeis.org

1, 0, 1, 3, 9, 30, 103, 357, 1257, 4494, 16246, 59246, 217719, 805389, 2996113, 11200113, 42047593, 158452138, 599113966, 2272065638, 8639763574, 32933685102, 125817012366, 481631387438, 1847110931703, 7095928565405, 27302745922817, 105204285608025
Offset: 0

Views

Author

David Scambler and Alois P. Heinz, Aug 18 2013

Keywords

Comments

From Gus Wiseman, Oct 13 2022: (Start)
Also the number of integer compositions of 2n whose half-alternating and skew-alternating sums are both 0, where we define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ..., and the skew-alternating sum to be A - B - C + D + E - F - G + ... For example, the a(0) = 1 through a(4) = 9 compositions are:
() . (1111) (1212) (1313)
(2121) (2222)
(11211) (3131)
(11312)
(12221)
(21311)
(112211)
(1112111)
(11111111)
For skew-alternating only: A001700, ranked by A357627, reverse A357628.
For partitions: A035363, half only A357639, skew only A357640.
For half-alternating only: A357641, ranked by A357625, reverse A357626.
These compositions are ranked by A357706.
(End)

Examples

			a(0) = 1: [], the empty path.
a(1) = 0.
a(2) = 1: ENWS.
a(3) = 3: EENWWS, ENNWSS, ENWWSE.
		

Crossrefs

Cf. A004006 (same rules, but self-avoiding).

Programs

  • Maple
    b:= proc(x, y, n) option remember; `if`(abs(x)+abs(y)>n, 0,
          `if`(n=0, 1, b(x+1, y, n-1) +b(y+1, -x, n-1)))
        end:
    a:= n-> ceil(b(0, 0, 2*n)/2):
    seq(a(n), n=0..40);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<5, [1, 0, 1, 3, 9][n+1],
         ((n-1)*(414288-1901580*n+186029*n^6-869551*n^5+2393807*n^4
         -3938624*n^3+3753546*n^2+1050*n^8-21605*n^7)*a(n-1)
         +(-17751540*n-12215020*n^5+3494038*n^6+3777840+27478070*n^4
         -39711374*n^3+35488098*n^2-2700*n^9+62370*n^8-621126*n^7)*a(n-2)
         +(-18193248+77490792*n-9138800*n^6+35323128*n^5-88122332*n^4
         +141370392*n^3-140075264*n^2+5400*n^9-135540*n^8+1476432*n^7)*a(n-3)
         +(-192473328*n+48577536+17091500*n^6-70036368*n^5+184890672*n^4
         -313388816*n^3+328043052*n^2-8400*n^9+224440*n^8-2600032*n^7)*a(n-4)
         +8*(n-5)*(150*n^6-2015*n^5+10852*n^4-29867*n^3+44208*n^2-33540*n
         +10416)*(-9+2*n)^2*a(n-5)) / (n^2*(396988*n-487261*n^2+150*n^7
         -3065*n^6+26092*n^5-119602*n^4+317746*n^3-131048)))
        end:
    seq(a(n), n=0..40);
  • Mathematica
    b[x_, y_, n_] := b[x, y, n] = If[Abs[x] + Abs[y] > n, 0, If[n == 0, 1, b[x + 1, y, n - 1] + b[y + 1, -x, n - 1]]];
    a[n_] := Ceiling[b[0, 0, 2n]/2];
    a /@ Range[0, 40] (* Jean-François Alcover, May 14 2020, after Maple *)
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[2n],halfats[#]==0&&skats[#]==0&]],{n,0,7}] (* Gus Wiseman, Oct 12 2022 *)

Formula

a(n) ~ 2^(2n-1)/(Pi*n). - Vaclav Kotesovec, Jul 16 2014

A357706 Numbers k such that the k-th composition in standard order has half-alternating sum and skew-alternating sum both 0.

Original entry on oeis.org

0, 15, 45, 54, 59, 153, 170, 179, 204, 213, 230, 235, 247, 255, 561, 594, 611, 660, 677, 710, 715, 727, 735, 750, 765, 792, 809, 842, 851, 871, 879, 894, 908, 917, 934, 939, 951, 959, 973, 982, 987, 1005, 1014, 1019
Offset: 1

Views

Author

Gus Wiseman, Oct 13 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ..., and the skew-alternating sum to be A - B - C + D + E - F - G + ...
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Crossrefs

For partitions and half only (or both): A000583, counted by A035363.
These compositions are counted by A228248.
For half-alternating only: A357625, reverse A357626, counted by A357641.
For skew-alternating only: A357627, reverse A357628, counted by A001700.
For reversed partitions and half only: A357631, counted by A357639.
For reversed partitions and skew only A357632, counted by A357640.
For partitions and skew only: A357636, counted by A035594.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Select[Range[0,1000],halfats[stc[#]]==0&&skats[stc[#]]==0&]

Formula

Intersection of A357625 and A357627.

A357709 Number of integer partitions of n whose length is twice their alternating sum.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 4, 3, 6, 6, 9, 11, 13, 18, 21, 28, 32, 44, 49, 65, 76, 96, 114, 141, 170, 204, 250, 295, 361, 425, 516, 606, 734, 858, 1031, 1210, 1440, 1690, 2000, 2347, 2759, 3240, 3786, 4441, 5174, 6053, 7030, 8210, 9509, 11074, 12807, 14870
Offset: 0

Views

Author

Gus Wiseman, Oct 16 2022

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. The alternating sum of a partition is also the number of odd conjugate parts.

Examples

			The a(1) = 0 through a(12) = 6 partitions:
  .  .  21  .  32  3111  43  3221  54      3331  65      4332
                             4211  411111  4222  422111  4431
                                           4321  521111  5322
                                           5311          5421
                                                         6411
                                                         51111111
		

Crossrefs

This is the "twice" version of A357189, ranked by A357486.
The version for compositions is A357847.
These partitions are ranked by A357848.
A000041 counts partitions, strict A000009.
A025047 counts alternating compositions.
A103919 counts partitions by alternating sum, full triangle A344651.
A357136 counts compositions by alternating sum, full triangle A097805.
A357182 counts compositions w/ length = alternating sum, ranked by A357184.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],Length[#]==2ats[#]&]],{n,0,30}]

A357848 Heinz numbers of integer partitions whose length is twice their alternating sum.

Original entry on oeis.org

1, 6, 15, 35, 40, 77, 84, 90, 143, 189, 210, 220, 221, 224, 250, 323, 364, 437, 462, 490, 495, 504, 525, 528, 667, 748, 819, 858, 899, 988, 1029, 1040, 1134, 1147, 1155, 1188, 1210, 1320, 1326, 1375, 1400, 1408, 1517, 1564, 1683, 1690, 1763, 1904, 1938, 2021
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The terms together with their prime indices begin:
     1: {}
     6: {1,2}
    15: {2,3}
    35: {3,4}
    40: {1,1,1,3}
    77: {4,5}
    84: {1,1,2,4}
    90: {1,2,2,3}
   143: {5,6}
   189: {2,2,2,4}
   210: {1,2,3,4}
   220: {1,1,3,5}
   221: {6,7}
   224: {1,1,1,1,1,4}
		

Crossrefs

These partitions are counted by A357709.
The version for compositions is counted by A357847.
A000041 counts partitions, strict A000009.
A003963 multiplies prime indices.
A025047 counts alternating compositions.
A056239 adds up prime indices.
A103919 counts partitions by alternating sum, full triangle A344651.
A357136 counts compositions by alternating sum, full triangle A097805.
A357182 counts compositions w/ length = alternating sum, ranked by A357184.
A357189 counts partitions w/ length = alternating sum, ranked by A357486.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[1000],Length[primeMS[#]]==2sats[primeMS[#]]&]
Previous Showing 31-39 of 39 results.