cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A358506 Matula-Goebel number of the n-th standard ordered rooted tree.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 6, 8, 7, 10, 9, 12, 10, 12, 12, 16, 11, 14, 15, 20, 15, 18, 18, 24, 14, 20, 18, 24, 20, 24, 24, 32, 13, 22, 21, 28, 25, 30, 30, 40, 21, 30, 27, 36, 30, 36, 36, 48, 22, 28, 30, 40, 30, 36, 36, 48, 28, 40, 36, 48, 40, 48, 48, 64, 13, 26, 33, 44
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2022

Keywords

Comments

First differs from A333219 at a(65) = 13, A333219(65) = 17.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The first eight standard ordered trees are: o, (o), ((o)), (oo), (((o))), ((o)o), (o(o)), (ooo), with Matula-Goebel numbers: 1, 2, 3, 4, 5, 6, 6, 8.
		

Crossrefs

For binary instead of standard encoding we have A127301.
There are exactly A206487(n) appearances of n.
For binary instead of Matula-Goebel encoding we have A358505.
Positions of first appearances are A358522, sorted A358521.
A000108 counts ordered rooted trees, unordered A000081.
A214577 and A358377 rank trees with no permutations.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    mgnum[t_]:=If[t=={},1,Times@@Prime/@mgnum/@t];
    Table[mgnum[srt[n]],{n,100}]

A358523 Standard ordered tree numbers of ordered trees in order of their binary encodings (A014486).

Original entry on oeis.org

1, 2, 4, 3, 8, 7, 6, 9, 5, 16, 15, 14, 25, 13, 12, 11, 18, 129, 65, 10, 33, 257, 17, 32, 31, 30, 57, 29, 28, 27, 50, 385, 193, 26, 97, 769, 49, 24, 23, 22, 41, 21, 36, 35, 258, 32769, 16385, 130, 8193, 16777217, 4097, 20, 19, 66
Offset: 0

Views

Author

Gus Wiseman, Nov 21 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.
The binary encoding of an ordered tree (A014486) is obtained by replacing the internal left and right brackets with 0's and 1's, thus forming a binary number.

Examples

			The first six binary encodings are: 0, 2, 10, 12, 42, 44, and the corresponding trees have standard ranks: 1, 2, 4, 3, 8, 7.
		

Crossrefs

A dual sequence is A358505.
A000108 counts ordered rooted trees, unordered A000081.
A014486 lists all binary encodings.

Programs

  • Mathematica
    stcinv[q_]:=Total[2^Accumulate[Reverse[q]]]/2;
    srtinv[t_]:=If[t=={},1,stcinv[srtinv/@t]+1];
    binbalQ[n_]:=n==0||Count[IntegerDigits[n,2],0]==Count[IntegerDigits[n,2],1]&&And@@Table[Count[Take[IntegerDigits[n,2],k],0]<=Count[Take[IntegerDigits[n,2],k],1],{k,IntegerLength[n,2]}];
    bint[n_]:=If[n==0,{},ToExpression[StringReplace[StringReplace[ToString[IntegerDigits[n,2]/.{1->"{",0->"}"}],","->""],"} {"->"},{"]]]
    Table[srtinv[bint[n]],{n,Select[Range[0,100],binbalQ]}]

A358521 Sorted list of positions of first appearances in the sequence of Matula-Goebel numbers of standard ordered trees (A358506).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 22, 24, 32, 33, 34, 35, 36, 37, 38, 40, 43, 44, 48, 64, 66, 67, 68, 69, 70, 72, 74, 75, 76, 80, 86, 88, 96, 128, 129, 131, 132, 133, 134, 136, 137, 138, 139, 140, 144, 147, 148, 150, 152, 160, 171, 172
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The terms together with their standard ordered trees begin:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   6: ((o)o)
   8: (ooo)
   9: ((oo))
  10: (((o))o)
  11: ((o)(o))
  12: ((o)oo)
  16: (oooo)
  17: ((((o))))
  18: ((oo)o)
  19: (((o))(o))
  20: (((o))oo)
		

Crossrefs

Positions of first appearances in A358506.
The unsorted version is A358522.
A000108 counts ordered rooted trees, unordered A000081.
A214577 and A358377 rank trees with no permutations.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    mgnum[t_]:=If[t=={},1,Times@@Prime/@mgnum/@t];
    fir[q_]:=Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&];
    fir[Table[mgnum[srt[n]],{n,100}]]

A358522 Least number k such that the k-th standard ordered tree has Matula-Goebel number n, i.e., A358506(k) = n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 11, 10, 17, 12, 33, 18, 19, 16, 257, 22, 129, 20, 35, 34, 1025, 24, 37, 66, 43, 36, 513, 38, 65537, 32, 67, 514, 69, 44, 2049, 258, 131, 40
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their standard ordered trees begin:
    1: o
    2: (o)
    3: ((o))
    4: (oo)
    5: (((o)))
    6: ((o)o)
    9: ((oo))
    8: (ooo)
   11: ((o)(o))
   10: (((o))o)
   17: ((((o))))
   12: ((o)oo)
   33: (((o)o))
   18: ((oo)o)
   19: (((o))(o))
   16: (oooo)
  257: (((oo)))
   22: ((o)(o)o)
  129: ((ooo))
   20: (((o))oo)
   35: ((oo)(o))
   34: ((((o)))o)
		

Crossrefs

Position of first appearance of n in A358506.
The sorted version is A358521.
A000108 counts ordered rooted trees, unordered A000081.
A214577 and A358377 rank trees with no permutations.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    mgnum[t_]:=If[t=={},1,Times@@Prime/@mgnum/@t];
    uv=Table[mgnum[srt[n]],{n,10000}];
    Table[Position[uv,k][[1,1]],{k,Min@@Complement[Range[Max@@uv],uv]-1}]

A358553 Number of internal (non-leaf) nodes in the n-th standard ordered rooted tree.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 2, 1, 2, 3, 3, 2, 3, 2, 2, 1, 4, 2, 4, 3, 4, 3, 3, 2, 2, 3, 3, 2, 3, 2, 2, 1, 3, 4, 3, 2, 5, 4, 4, 3, 3, 4, 4, 3, 4, 3, 3, 2, 4, 2, 4, 3, 4, 3, 3, 2, 2, 3, 3, 2, 3, 2, 2, 1, 3, 3, 5, 4, 4, 3, 3, 2, 4, 5, 5, 4, 5, 4, 4, 3, 5, 3, 5, 4, 5, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 26 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The 89-th standard rooted tree is ((o)o(oo)), and it has 3 internal nodes, so a(89) = 3.
		

Crossrefs

This statistic is counted by A001263, unordered A358575 (reverse A055277).
The unordered version is A342507, firsts A358554.
Other statistics: A358371 (leaves), A358372 (nodes), A358379 (edge-height).
A000081 counts rooted trees, ordered A000108.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    Table[Count[srt[n],[_],{0,Infinity}],{n,100}]

A358550 Depth of the ordered rooted tree with binary encoding A014486(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 3, 3, 4, 2, 3, 3, 3, 4, 3, 3, 3, 3, 4, 4, 4, 4, 5, 2, 3, 3, 3, 4, 3, 3, 3, 3, 4, 4, 4, 4, 5, 3, 3, 3, 3, 4, 3, 3, 3, 3, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 2, 3, 3, 3, 4, 3, 3, 3, 3, 4, 4, 4, 4, 5, 3, 3, 3, 3, 4, 3, 3, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2022

Keywords

Comments

The binary encoding of an ordered tree (A014486) is obtained by replacing the internal left and right brackets with 0's and 1's, thus forming a binary number.

Examples

			The first few rooted trees in binary encoding are:
    0: o
    2: (o)
   10: (oo)
   12: ((o))
   42: (ooo)
   44: (o(o))
   50: ((o)o)
   52: ((oo))
   56: (((o)))
  170: (oooo)
  172: (oo(o))
  178: (o(o)o)
  180: (o(oo))
  184: (o((o)))
		

Crossrefs

Positions of first appearances are A014137.
Leaves of the ordered tree are counted by A057514, standard A358371.
Branches of the ordered tree are counted by A057515.
Edges of the ordered tree are counted by A072643.
The Matula-Goebel number of the ordered tree is A127301.
Positions of 2's are A155587, indices of A020988.
The standard ranking of the ordered tree is A358523.
Nodes of the ordered tree are counted by A358551, standard A358372.
For standard instead of binary encoding we have A358379.
A000108 counts ordered rooted trees, unordered A000081.
A014486 lists all binary encodings.

Programs

  • Mathematica
    binbalQ[n_]:=n==0||Count[IntegerDigits[n,2],0]==Count[IntegerDigits[n,2],1]&&And@@Table[Count[Take[IntegerDigits[n,2],k],0]<=Count[Take[IntegerDigits[n,2],k],1],{k,IntegerLength[n,2]}];
    bint[n_]:=If[n==0,{},ToExpression[StringReplace[StringReplace[ToString[IntegerDigits[n,2]/.{1->"{",0->"}"}],","->""],"} {"->"},{"]]];
    Table[Depth[bint[k]]-1,{k,Select[Range[0,1000],binbalQ]}]

A358551 Number of nodes in the ordered rooted tree with binary encoding A014486(n).

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2022

Keywords

Comments

The binary encoding of an ordered tree (A014486) is obtained by replacing the internal left and right brackets with 0's and 1's, thus forming a binary number.

Examples

			The first few rooted trees in binary encoding are:
    0: o
    2: (o)
   10: (oo)
   12: ((o))
   42: (ooo)
   44: (o(o))
   50: ((o)o)
   52: ((oo))
   56: (((o)))
  170: (oooo)
  172: (oo(o))
  178: (o(o)o)
  180: (o(oo))
  184: (o((o)))
		

Crossrefs

Run-lengths are A000108.
Binary encodings are listed by A014486.
Leaves of the ordered tree are counted by A057514, standard A358371.
Branches of the ordered tree are counted by A057515.
Edges of the ordered tree are counted by A072643.
The Matula-Goebel number of the ordered tree is A127301.
For standard instead of binary encoding we have A358372.
The standard ranking of the ordered tree is A358523.
Depth of the ordered tree is A358550, standard A358379.

Programs

  • Mathematica
    binbalQ[n_]:=n==0||Count[IntegerDigits[n,2],0]==Count[IntegerDigits[n,2],1]&&And@@Table[Count[Take[IntegerDigits[n,2],k],0]<=Count[Take[IntegerDigits[n,2],k],1],{k,IntegerLength[n,2]}];
    bint[n_]:=If[n==0,{},ToExpression[StringReplace[StringReplace[ToString[IntegerDigits[n,2]/.{1->"{",0->"}"}],","->""],"} {"->"},{"]]];
    Table[Count[bint[k],_,{0,Infinity}],{k,Select[Range[0,10000],binbalQ]}]

Formula

a(n) = A072643(n) + 1.

A358525 Number of distinct permutations of the n-th composition in standard order.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 3, 2, 3, 3, 1, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 1, 1, 2, 2, 3, 1, 6, 6, 4, 2, 6, 1, 6, 6, 6, 6, 5, 2, 3, 6, 4, 6, 6, 6, 5, 3, 4, 6, 5, 4, 5, 5, 1, 1, 2, 2, 3, 2, 6, 6, 4, 2, 3, 3, 12, 3, 12, 12, 5, 2, 6, 3, 12, 3, 4
Offset: 0

Views

Author

Gus Wiseman, Nov 21 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The a(45) = 6 permutations are: (2121), (2112), (2211), (1221), (1212), (1122).
		

Crossrefs

See link for sequences related to standard compositions.
Positions of 1's are A272919.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Table[Length[Permutations[stc[n]]],{n,0,100}]
Previous Showing 11-18 of 18 results.