A358335
Number of integer compositions of n whose parts have weakly decreasing numbers of prime factors (with multiplicity).
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 12, 19, 29, 44, 68, 100, 153, 227, 342, 509, 759, 1129, 1678, 2492, 3699, 5477, 8121, 12015, 17795, 26313, 38924, 57541, 85065, 125712, 185758, 274431, 405420, 598815, 884465, 1306165, 1928943, 2848360, 4205979, 6210289, 9169540
Offset: 0
The a(0) = 1 through a(6) = 12 compositions:
() (1) (2) (3) (4) (5) (6)
(11) (21) (22) (23) (33)
(111) (31) (32) (42)
(211) (41) (51)
(1111) (221) (222)
(311) (231)
(2111) (321)
(11111) (411)
(2211)
(3111)
(21111)
(111111)
The strictly decreasing case is
A358901.
-
Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],GreaterEqual@@PrimeOmega/@#&]],{n,0,10}]
A358902
Number of integer compositions of n whose parts have weakly decreasing numbers of distinct prime factors (A001221).
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 13, 21, 33, 53, 84, 134, 213, 338, 536, 850, 1349, 2136, 3389, 5367, 8509, 13480, 21362, 33843, 53624, 84957, 134600, 213251, 337850, 535251, 847987, 1343440, 2128372, 3371895, 5341977, 8463051, 13407689, 21241181, 33651507, 53312538, 84460690
Offset: 0
The a(0) = 1 through a(6) = 13 compositions:
() (1) (2) (3) (4) (5) (6)
(11) (21) (22) (23) (24)
(111) (31) (32) (33)
(211) (41) (42)
(1111) (221) (51)
(311) (222)
(2111) (231)
(11111) (321)
(411)
(2211)
(3111)
(21111)
(111111)
The strictly decreasing case is
A358903.
A116608 counts partitions by sum and number of distinct parts.
A334028 counts distinct parts in standard compositions.
A358836 counts multiset partitions with all distinct block sizes.
-
p:= proc(n) option remember; nops(ifactors(n)[2]) end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,
add((t-> `if`(t<=i, b(n-j, t), 0))(p(j)), j=1..n)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..40); # Alois P. Heinz, Feb 14 2024
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],GreaterEqual@@PrimeNu/@#&]],{n,0,10}]
A358909
Number of integer partitions of n whose parts have weakly decreasing numbers of prime factors (A001222).
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 41, 53, 73, 93, 124, 157, 206, 256, 329, 406, 514, 628, 784, 949, 1174, 1411, 1725, 2061, 2500, 2966, 3570, 4217, 5039, 5919, 7027, 8219, 9706, 11301, 13268, 15394, 17995, 20792, 24195, 27863, 32288, 37061, 42779, 48950, 56306
Offset: 0
The complement is counted by
A358910.
-
Table[Length[Select[IntegerPartitions[n],GreaterEqual@@PrimeOmega/@#&]],{n,0,30}]
A358835
Number of multiset partitions of integer partitions of n with constant block sizes and constant block sums.
Original entry on oeis.org
1, 1, 3, 4, 8, 8, 17, 16, 31, 34, 54, 57, 108, 102, 166, 191, 294, 298, 504, 491, 803, 843, 1251, 1256, 2167, 1974, 3133, 3226, 4972, 4566, 8018, 6843, 11657, 11044, 17217, 15010, 28422, 21638, 38397, 35067, 58508, 44584, 91870, 63262, 125114, 106264, 177483
Offset: 0
The a(1) = 1 through a(6) = 17 multiset partitions:
{1} {2} {3} {4} {5} {6}
{11} {12} {13} {14} {15}
{1}{1} {111} {22} {23} {24}
{1}{1}{1} {112} {113} {33}
{1111} {122} {114}
{2}{2} {1112} {123}
{11}{11} {11111} {222}
{1}{1}{1}{1} {1}{1}{1}{1}{1} {1113}
{1122}
{3}{3}
{11112}
{111111}
{12}{12}
{2}{2}{2}
{111}{111}
{11}{11}{11}
{1}{1}{1}{1}{1}{1}
The version for set partitions is
A327899.
For distinct instead of constant lengths and sums we have
A358832.
The version for twice-partitions is
A358833.
A001970 counts multiset partitions of integer partitions.
-
Table[If[n==0,1,Length[Union[Sort/@Join@@Table[Select[Tuples[IntegerPartitions[d],n/d],SameQ@@Length/@#&],{d,Divisors[n]}]]]],{n,0,20}]
-
P(n,y) = 1/prod(k=1, n, 1 - y*x^k + O(x*x^n))
seq(n) = {my(u=Vec(P(n,y)-1)); concat([1], vector(n, n, sumdiv(n, d, my(p=u[n/d]); sum(j=1, n/d, binomial(d + polcoef(p, j, y) - 1, d)))))} \\ Andrew Howroyd, Dec 31 2022
A358910
Number of integer partitions of n whose parts do not have weakly decreasing numbers of prime factors (A001222).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 4, 8, 11, 19, 25, 41, 56, 84, 113, 164, 218, 306, 401, 547, 711, 949, 1218, 1599, 2034, 2625, 3310, 4224, 5283, 6664, 8271, 10336, 12747, 15791, 19343, 23791, 28979, 35398, 42887, 52073, 62779, 75804, 90967, 109291, 130605
Offset: 0
The a(9) = 1 through a(14) = 11 partitions:
(54) (541) (74) (543) (76) (554)
(542) (741) (544) (743)
(5411) (5421) (742) (761)
(54111) (5422) (5432)
(5431) (5441)
(7411) (7421)
(54211) (54221)
(541111) (54311)
(74111)
(542111)
(5411111)
The complement is counted by
A358909.
-
Table[Length[Select[IntegerPartitions[n],!GreaterEqual@@PrimeOmega/@#&]],{n,0,30}]
A358837
Number of odd-length multiset partitions of integer partitions of n.
Original entry on oeis.org
0, 1, 2, 4, 7, 14, 28, 54, 106, 208, 399, 757, 1424, 2642, 4860, 8851, 15991, 28673, 51095, 90454, 159306, 279067, 486598, 844514, 1459625, 2512227, 4307409, 7357347, 12522304, 21238683, 35903463, 60497684, 101625958, 170202949, 284238857, 473356564, 786196353
Offset: 0
The a(1) = 1 through a(5) = 14 multiset partitions:
{{1}} {{2}} {{3}} {{4}} {{5}}
{{1,1}} {{1,2}} {{1,3}} {{1,4}}
{{1,1,1}} {{2,2}} {{2,3}}
{{1},{1},{1}} {{1,1,2}} {{1,1,3}}
{{1,1,1,1}} {{1,2,2}}
{{1},{1},{2}} {{1,1,1,2}}
{{1},{1},{1,1}} {{1,1,1,1,1}}
{{1},{1},{3}}
{{1},{2},{2}}
{{1},{1},{1,2}}
{{1},{2},{1,1}}
{{1},{1},{1,1,1}}
{{1},{1,1},{1,1}}
{{1},{1},{1},{1},{1}}
The version for set partitions is
A024429.
These multiset partitions are ranked by
A026424.
The version for partitions is
A027193.
The version for twice-partitions is
A358824.
A001970 counts multiset partitions of integer partitions.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[Join@@mps/@Reverse/@IntegerPartitions[n],OddQ[Length[#]]&]],{n,0,10}]
-
P(v,y) = {1/prod(k=1, #v, (1 - y*x^k + O(x*x^#v))^v[k])}
seq(n) = {my(v=vector(n, k, numbpart(k))); (Vec(P(v,1)) - Vec(P(v,-1)))/2} \\ Andrew Howroyd, Dec 31 2022
Comments