cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A063834 Twice partitioned numbers: the number of ways a number can be partitioned into not necessarily different parts and each part is again so partitioned.

Original entry on oeis.org

1, 1, 3, 6, 15, 28, 66, 122, 266, 503, 1027, 1913, 3874, 7099, 13799, 25501, 48508, 88295, 165942, 299649, 554545, 997281, 1817984, 3245430, 5875438, 10410768, 18635587, 32885735, 58399350, 102381103, 180634057, 314957425, 551857780, 958031826, 1667918758
Offset: 0

Views

Author

Wouter Meeussen, Aug 21 2001

Keywords

Comments

These are different from plane partitions.
For ordered partitions of partitions see A055887 which may be computed from A036036 and A048996. - Alford Arnold, May 19 2006
Twice partitioned numbers correspond to triangles (or compositions) in the multiorder of integer partitions. - Gus Wiseman, Oct 28 2015

Examples

			G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + 266*x^8 + ...
If n=6, a possible first partitioning is (3+3), resulting in the following second partitionings: ((3),(3)), ((3),(2+1)), ((3),(1+1+1)), ((2+1),(3)), ((2+1),(2+1)), ((2+1),(1+1+1)), ((1+1+1),(3)), ((1+1+1),(2+1)), ((1+1+1),(1+1+1)).
		

Crossrefs

The strict case is A296122.
Row sums of A321449.
Column k=2 of A323718.
Without singletons we have A327769, A358828, A358829.
For odd lengths we have A358823, A358824.
For distinct lengths we have A358830, A358912.
For strict partitions see A358914, A382524.
A000041 counts integer partitions, strict A000009.
A001970 counts multiset partitions of integer partitions.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1)+`if`(i>n, 0, numbpart(i)*b(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 26 2015
  • Mathematica
    Table[Plus @@ Apply[Times, IntegerPartitions[i] /. i_Integer :> PartitionsP[i], 2], {i, 36}]
    (* second program: *)
    b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i > n, 0, PartitionsP[i]*b[n-i, i]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 19 2016 */

Formula

G.f.: 1/Product_{k>0} (1-A000041(k)*x^k). n*a(n) = Sum_{k=1..n} b(k)*a(n-k), a(0) = 1, where b(k) = Sum_{d|k} d*A000041(d)^(k/d) = 1, 5, 10, 29, 36, 110, 106, ... . - Vladeta Jovovic, Jun 19 2003
From Vaclav Kotesovec, Mar 27 2016: (Start)
a(n) ~ c * 5^(n/4), where
c = 96146522937.7161898848278970039269600938032826... if n mod 4 = 0
c = 96146521894.9433858914667933636782092683849082... if n mod 4 = 1
c = 96146522937.2138934755566928890704687838407524... if n mod 4 = 2
c = 96146521894.8218716328341714149619262713426755... if n mod 4 = 3
(End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 26 2015

A358901 Number of integer partitions of n whose parts have all different numbers of prime factors (A001222).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 5, 7, 9, 8, 9, 11, 11, 15, 16, 16, 18, 20, 22, 26, 28, 31, 32, 36, 40, 45, 46, 46, 50, 59, 64, 70, 75, 78, 83, 89, 94, 108, 106, 104, 120, 137, 142, 147, 150, 161, 174, 190, 200, 220, 226, 224, 248, 274, 274, 287, 301, 320, 340, 351, 361
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(1) = 1 through a(11) = 7 partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (A)    (B)
            (21)  (31)  (41)  (42)  (43)   (62)   (54)   (82)   (74)
                              (51)  (61)   (71)   (63)   (91)   (65)
                                    (421)  (431)  (81)   (451)  (83)
                                                  (621)  (631)  (92)
                                                                (A1)
                                                                (821)
		

Crossrefs

The weakly decreasing version is A358909 (complement A358910).
The version not counting multiplicity is A358903, weakly decreasing A358902.
For equal numbers of prime factors we have A319169, compositions A358911.
A001222 counts prime factors, distinct A001221.
A063834 counts twice-partitions.
A358836 counts multiset partitions with all distinct block sizes.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@PrimeOmega/@#&]],{n,0,60}]

Extensions

a(61) and beyond from Lucas A. Brown, Dec 14 2022

A358911 Number of integer compositions of n whose parts all have the same number of prime factors, counted with multiplicity.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 7, 9, 12, 20, 21, 39, 49, 79, 109, 161, 236, 345, 512, 752, 1092, 1628, 2376, 3537, 5171, 7650, 11266, 16634, 24537, 36173, 53377, 78791, 116224, 171598, 253109, 373715, 551434, 814066, 1201466, 1773425, 2617744, 3864050, 5703840, 8419699
Offset: 0

Views

Author

Gus Wiseman, Dec 11 2022

Keywords

Examples

			The a(1) = 1 through a(8) = 9 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (23)     (33)      (25)       (35)
                    (1111)  (32)     (222)     (52)       (44)
                            (11111)  (111111)  (223)      (53)
                                               (232)      (233)
                                               (322)      (323)
                                               (1111111)  (332)
                                                          (2222)
                                                          (11111111)
		

Crossrefs

The case of partitions is A319169, ranked by A320324.
The weakly decreasing version is A358335, strictly A358901.
For sequences of partitions see A358905.
A001222 counts prime factors, distinct A001221.
A011782 counts compositions.
A358902 = compositions with weakly decreasing A001221, strictly A358903.
A358909 = partitions with weakly decreasing A001222, complement A358910.

Programs

  • Maple
    b:= proc(n, i) option remember; uses numtheory; `if`(n=0, 1, add(
         (t-> `if`(i<0 or i=t, b(n-j, t), 0))(bigomega(j)), j=1..n))
        end:
    a:= n-> b(n, -1):
    seq(a(n), n=0..44);  # Alois P. Heinz, Feb 12 2024
  • Mathematica
    Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],SameQ@@PrimeOmega/@#&]],{n,0,10}]

Extensions

a(21) and beyond from Lucas A. Brown, Dec 15 2022

A358903 Number of integer partitions of n whose parts have all different numbers of distinct prime factors (A001221).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 5, 7, 8, 7, 9, 10, 10, 10, 9, 11, 15, 14, 13, 15, 14, 14, 17, 16, 17, 17, 16, 16, 17, 17, 21, 26, 24, 23, 25, 27, 29, 32, 31, 29, 36, 36, 35, 37, 37, 42, 49, 45, 44, 50, 49, 50, 58, 55, 55, 58, 56, 58, 66, 62, 65, 75
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2022

Keywords

Examples

			The a(15) = 8 partitions are: (15), (14,1), (12,3), (12,2,1), (10,5), (10,4,1), (6,9), (8,6,1).
		

Crossrefs

Counting prime factors with multiplicity gives A358901.
The weakly decreasing version is A358902, with multiplicity A358335.
A001222 counts prime factors, distinct A001221.
A116608 counts partitions by sum and number of distinct parts.
A358836 counts multiset partitions with all distinct block sizes.

Programs

  • Maple
    p:= proc(n) option remember; nops(ifactors(n)[2]) end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,
          add((t-> `if`(t b(n$2):
    seq(a(n), n=0..68);  # Alois P. Heinz, Feb 14 2024
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@PrimeNu/@#&]],{n,0,30}]

Extensions

a(56) and beyond from Lucas A. Brown, Dec 14 2022

A358335 Number of integer compositions of n whose parts have weakly decreasing numbers of prime factors (with multiplicity).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 12, 19, 29, 44, 68, 100, 153, 227, 342, 509, 759, 1129, 1678, 2492, 3699, 5477, 8121, 12015, 17795, 26313, 38924, 57541, 85065, 125712, 185758, 274431, 405420, 598815, 884465, 1306165, 1928943, 2848360, 4205979, 6210289, 9169540
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2022

Keywords

Examples

			The a(0) = 1 through a(6) = 12 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (21)   (22)    (23)     (33)
                 (111)  (31)    (32)     (42)
                        (211)   (41)     (51)
                        (1111)  (221)    (222)
                                (311)    (231)
                                (2111)   (321)
                                (11111)  (411)
                                         (2211)
                                         (3111)
                                         (21111)
                                         (111111)
		

Crossrefs

For lengths of partitions see A141199, compositions A218482.
The strictly decreasing case is A358901.
The version not counting multiplicity is A358902, strict A358903.
The case of partitions is A358909, complement A358910.
The case of equality is A358911, partitions A319169.
A001222 counts prime factors, distinct A001221.
A011782 counts compositions.
A063834 counts twice-partitions.

Programs

  • Mathematica
    Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],GreaterEqual@@PrimeOmega/@#&]],{n,0,10}]

Extensions

a(21) and beyond from Lucas A. Brown, Dec 15 2022

A358910 Number of integer partitions of n whose parts do not have weakly decreasing numbers of prime factors (A001222).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 4, 8, 11, 19, 25, 41, 56, 84, 113, 164, 218, 306, 401, 547, 711, 949, 1218, 1599, 2034, 2625, 3310, 4224, 5283, 6664, 8271, 10336, 12747, 15791, 19343, 23791, 28979, 35398, 42887, 52073, 62779, 75804, 90967, 109291, 130605
Offset: 0

Views

Author

Gus Wiseman, Dec 09 2022

Keywords

Examples

			The a(9) = 1 through a(14) = 11 partitions:
  (54)  (541)  (74)    (543)    (76)      (554)
               (542)   (741)    (544)     (743)
               (5411)  (5421)   (742)     (761)
                       (54111)  (5422)    (5432)
                                (5431)    (5441)
                                (7411)    (7421)
                                (54211)   (54221)
                                (541111)  (54311)
                                          (74111)
                                          (542111)
                                          (5411111)
		

Crossrefs

For sequences of partitions see A141199, compositions A218482.
The case of equality is A319169, for compositions A358911.
The complement is counted by A358909.
A001222 counts prime factors, distinct A001221.
A063834 counts twice-partitions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!GreaterEqual@@PrimeOmega/@#&]],{n,0,30}]
Showing 1-6 of 6 results.