cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 80 results. Next

A360249 Numbers for which the prime indices have the same median as the distinct prime indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2023

Keywords

Comments

First differs from A072774 in having 90.
First differs from A242414 in having 180.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 126 are {1,2,2,4} with median 2 and distinct prime indices {1,2,4} with median 2, so 126 is in the sequence.
The prime indices of 180 are {1,1,2,2,3} with median 2 and distinct prime indices {1,2,3} with median 2, so 180 is in the sequence.
		

Crossrefs

These partitions are counted by A360245.
The complement for mean instead of median is A360246, counted by A360242.
For mean instead of median we have A360247, counted by A360243.
The complement is A360248, counted by A360244.
For multiplicities instead of parts: A360453, counted by A360455.
For multiplicities instead of distinct parts: A360454, counted by A360456.
A112798 lists prime indices, length A001222, sum A056239.
A240219 counts partitions with mean equal to median, ranks A359889.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.
A325347 = partitions with integer median, strict A359907, ranks A359908.
A359893 and A359901 count partitions by median.
A359894 = partitions with mean different from median, ranks A359890.
A360005 gives median of prime indices (times two).

Programs

  • Maple
    isA360249 := proc(n)
        local ifs,pidx,pe,medAll,medDist ;
        if n = 1 then
            return true ;
        end if ;
        ifs := ifactors(n)[2] ;
        pidx := [] ;
        for pe in ifs do
            numtheory[pi](op(1,pe)) ;
            pidx := [op(pidx),seq(%,i=1..op(2,pe))] ;
        end do:
        medAll := stats[describe,median](sort(pidx)) ;
        pidx := convert(convert(pidx,set),list) ;
        medDist := stats[describe,median](sort(pidx)) ;
        if medAll = medDist then
            true;
        else
            false;
        end if;
    end proc:
    for n from 1 to 130 do
        if isA360249(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, May 22 2023
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Median[prix[#]]==Median[Union[prix[#]]]&]

A360552 Numbers > 1 whose distinct prime factors have integer median.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 30, 31, 32, 33, 35, 37, 39, 41, 42, 43, 45, 47, 49, 51, 53, 55, 57, 59, 60, 61, 63, 64, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78, 79, 81, 83, 84, 85, 87, 89, 90, 91, 93, 95, 97, 99, 101, 102, 103
Offset: 1

Views

Author

Gus Wiseman, Feb 16 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime factors of 900 are {2,2,3,3,5,5}, with distinct parts {2,3,5}, with median 3, so 900 is in the sequence.
		

Crossrefs

For mean instead of median we have A078174, complement of A176587.
The complement is A100367 (without 1).
Positions of even terms in A360458.
- For divisors (A063655) we have A139711, complement A139710.
- For prime indices (A360005) we have A359908, complement A359912.
- For distinct prime indices (A360457) we have A360550, complement A360551.
- For distinct prime factors (A360458) we have A360552, complement A100367.
- For prime factors (A360459) we have A359913, complement A072978.
- For prime multiplicities (A360460) we have A360553, complement A360554.
- For 0-prepended differences (A360555) we have A360556, complement A360557.
A027746 lists prime factors, length A001222, indices A112798.
A027748 lists distinct prime factors, length A001221, indices A304038.
A323171/A323172 = mean of distinct prime factors, indices A326619/A326620.
A325347 = partitions w/ integer median, complement A307683, strict A359907.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Select[Range[2,100],IntegerQ[Median[First/@FactorInteger[#]]]&]

A362621 One and numbers whose multiset of prime factors (with multiplicity) has the same median as maximum.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 18, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 50, 53, 54, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 89, 97, 98, 101, 103, 107, 108, 109, 113, 121, 125, 127, 128, 131, 137, 139, 147, 149, 151, 157, 162, 163, 167, 169
Offset: 1

Views

Author

Gus Wiseman, May 12 2023

Keywords

Comments

First differs from A334965 in having 750 and lacking 2250.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime factorization of 108 is 2*2*3*3*3, and the multiset {2,2,3,3,3} has median 3 and maximum 3, so 108 is in the sequence.
The prime factorization of 2250 is 2*3*3*5*5*5, and the multiset {2,3,3,5,5,5} has median 4 and maximum 5, so 2250 is not in the sequence.
The terms together with their prime indices begin:
     1: {}           25: {3,3}           64: {1,1,1,1,1,1}
     2: {1}          27: {2,2,2}         67: {19}
     3: {2}          29: {10}            71: {20}
     4: {1,1}        31: {11}            73: {21}
     5: {3}          32: {1,1,1,1,1}     75: {2,3,3}
     7: {4}          37: {12}            79: {22}
     8: {1,1,1}      41: {13}            81: {2,2,2,2}
     9: {2,2}        43: {14}            83: {23}
    11: {5}          47: {15}            89: {24}
    13: {6}          49: {4,4}           97: {25}
    16: {1,1,1,1}    50: {1,3,3}         98: {1,4,4}
    17: {7}          53: {16}           101: {26}
    18: {1,2,2}      54: {1,2,2,2}      103: {27}
    19: {8}          59: {17}           107: {28}
    23: {9}          61: {18}           108: {1,1,2,2,2}
		

Crossrefs

Partitions of this type are counted by A053263.
For mode instead of median we have A362619, counted by A171979.
For parts at middle position (instead of median) we have A362622.
The complement is A362980, counted by A237821.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A362611 counts modes in prime factorization, triangle version A362614.
A362613 counts co-modes in prime factorization, triangle version A362615.

Programs

  • Mathematica
    Select[Range[100],(y=Flatten[Apply[ConstantArray,FactorInteger[#],{1}]];Max@@y==Median[y])&]

A363730 Numbers whose prime indices have different mean, median, and mode.

Original entry on oeis.org

42, 60, 66, 70, 78, 84, 102, 114, 130, 132, 138, 140, 150, 154, 156, 165, 170, 174, 180, 182, 186, 190, 195, 204, 220, 222, 228, 230, 231, 246, 255, 258, 260, 266, 276, 282, 285, 286, 290, 294, 308, 310, 315, 318, 322, 330, 340, 345, 348, 354, 357, 360, 364
Offset: 1

Views

Author

Gus Wiseman, Jun 24 2023

Keywords

Comments

If there are multiple modes, then the mode is automatically considered different from the mean and median; otherwise, we take the unique mode.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 180 are {1,1,2,2,3}, with mean 9/5, median 2, modes {1,2}, so 180 is in the sequence.
The prime indices of 108 are {1,1,2,2,2}, with mean 8/5, median 2, modes {2}, so 108 is not in the sequence.
The terms together with their prime indices begin:
   42: {1,2,4}
   60: {1,1,2,3}
   66: {1,2,5}
   70: {1,3,4}
   78: {1,2,6}
   84: {1,1,2,4}
  102: {1,2,7}
  114: {1,2,8}
  130: {1,3,6}
  132: {1,1,2,5}
  138: {1,2,9}
  140: {1,1,3,4}
  150: {1,2,3,3}
		

Crossrefs

These partitions are counted by A363720
For equal instead of unequal we have A363727, counted by A363719.
The version for factorizations is A363742, equal A363741.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A356862 ranks partitions with a unique mode, counted by A362608.
A359178 ranks partitions with multiple modes, counted by A362610.
A360005 gives twice the median of prime indices.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.
Just two statistics:
- (mean) = (median): A359889, counted by A240219.
- (mean) != (median): A359890, counted by A359894.
- (mean) = (mode): counted by A363723, see A363724, A363731.
- (median) = (mode): counted by A363740.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Select[Range[100],{Mean[prix[#]]}!={Median[prix[#]]}!=modes[prix[#]]&]

Formula

All three of A326567(a(n))/A326568(a(n)), A360005(a(n))/2, and A363486(a(n)) = A363487(a(n)) are different.

A359896 Number of odd-length integer partitions of n whose parts do not have the same mean as median.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 2, 6, 9, 11, 15, 27, 32, 50, 58, 72, 112, 149, 171, 246, 286, 359, 477, 630, 773, 941, 1181, 1418, 1749, 2289, 2668, 3429, 4162, 4878, 6074, 7091, 8590, 10834, 12891, 15180, 18491, 22314, 25845, 31657, 36394, 42269, 52547, 62414, 73576, 85701
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2023

Keywords

Examples

			The a(4) = 1 through a(9) = 11 partitions:
  (211)  (221)  (411)    (322)    (332)      (441)
         (311)  (21111)  (331)    (422)      (522)
                         (421)    (431)      (621)
                         (511)    (521)      (711)
                         (22111)  (611)      (22221)
                         (31111)  (22211)    (32211)
                                  (32111)    (33111)
                                  (41111)    (42111)
                                  (2111111)  (51111)
                                             (2211111)
                                             (3111111)
		

Crossrefs

These partitions are ranked by A359892.
The any-length version is A359894, complement A240219, strict A359898.
The complement is counted by A359895, ranked by A359891.
The strict case is A359900, complement A359899.
A000041 counts partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A067538 counts ptns with integer mean, strict A102627, ranked by A316413.
A237984 counts ptns containing their mean, strict A240850, ranked by A327473.
A325347 counts ptns with integer median, strict A359907, ranked by A359908.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], OddQ[Length[#]]&&Mean[#]!=Median[#]&]],{n,0,30}]

A359898 Number of strict integer partitions of n whose parts do not have the same mean as median.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 4, 6, 5, 11, 12, 14, 21, 29, 26, 44, 44, 58, 68, 92, 92, 118, 137, 165, 192, 241, 223, 324, 353, 405, 467, 518, 594, 741, 809, 911, 987, 1239, 1276, 1588, 1741, 1823, 2226, 2566, 2727, 3138, 3413, 3905, 4450, 5093, 5434, 6134
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2023

Keywords

Examples

			The a(7) = 1 through a(13) = 11 partitions:
  (4,2,1)  (4,3,1)  (6,2,1)  (5,3,2)  (5,4,2)    (6,5,1)    (6,4,3)
           (5,2,1)           (5,4,1)  (6,3,2)    (7,3,2)    (6,5,2)
                             (6,3,1)  (6,4,1)    (8,3,1)    (7,4,2)
                             (7,2,1)  (7,3,1)    (9,2,1)    (7,5,1)
                                      (8,2,1)    (6,3,2,1)  (8,3,2)
                                      (5,3,2,1)             (8,4,1)
                                                            (9,3,1)
                                                            (10,2,1)
                                                            (5,4,3,1)
                                                            (6,4,2,1)
                                                            (7,3,2,1)
		

Crossrefs

The non-strict version is ranked by A359890, complement A359889.
The non-strict version is A359894, complement A240219.
The complement is counted by A359897.
The odd-length case is A359900, complement A359899.
A000041 counts partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean, ranked by A326567/A326568.
A008289 counts strict partitions by mean.
A067538 counts ptns with integer mean, strict A102627, ranked by A316413.
A237984 counts ptns containing their mean, strict A240850, ranked by A327473.
A325347 counts ptns with integer median, strict A359907, ranked by A359908.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Mean[#]!=Median[#]&]],{n,0,30}]

A360454 Numbers for which the prime multiplicities (or sorted signature) have the same median as the prime indices.

Original entry on oeis.org

1, 2, 9, 54, 100, 120, 125, 135, 168, 180, 189, 240, 252, 264, 280, 297, 300, 312, 336, 351, 396, 408, 440, 450, 456, 459, 468, 480, 513, 520, 528, 540, 552, 560, 588, 612, 616, 621, 624, 672, 680, 684, 696, 728, 744, 756, 760, 783, 816, 828, 837, 880, 882
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    9: {2,2}
   54: {1,2,2,2}
  100: {1,1,3,3}
  120: {1,1,1,2,3}
  125: {3,3,3}
  135: {2,2,2,3}
  168: {1,1,1,2,4}
  180: {1,1,2,2,3}
  189: {2,2,2,4}
  240: {1,1,1,1,2,3}
For example, the prime indices of 336 are {1,1,1,1,2,4} with median 1 and multiplicities {1,1,4} with median 1, so 336 is in the sequence.
		

Crossrefs

For mean instead of median we have A359903, counted by A360068.
For distinct indices instead of indices we have A360453, counted by A360455.
For distinct indices instead of multiplicities: A360249, counted by A360245.
These partitions are counted by A360456.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, length A001222, sum A056239.
A240219 counts partitions with mean equal to median, ranked by A359889.
A325347 counts partitions w/ integer median, strict A359907, ranks A359908.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.
A359893 and A359901 count partitions by median.
A359894 counts partitions with mean different from median, ranks A359890.
A360005 gives median of prime indices (times two).

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Median[prix[#]]==Median[Length/@Split[prix[#]]]&]

A360686 Number of integer partitions of n whose distinct parts have integer median.

Original entry on oeis.org

1, 2, 2, 4, 3, 8, 7, 16, 17, 31, 35, 60, 67, 99, 121, 170, 200, 270, 328, 436, 522, 674, 828, 1061, 1292, 1626, 1983, 2507, 3035, 3772, 4582, 5661, 6801, 8358, 10059, 12231, 14627, 17702, 21069, 25423, 30147, 36100, 42725, 50936, 60081, 71388, 84007, 99408
Offset: 1

Views

Author

Gus Wiseman, Feb 20 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(8) = 16 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (331)      (44)
                    (31)    (11111)  (42)      (421)      (53)
                    (1111)           (51)      (511)      (62)
                                     (222)     (3211)     (71)
                                     (321)     (31111)    (422)
                                     (3111)    (1111111)  (431)
                                     (111111)             (521)
                                                          (2222)
                                                          (3221)
                                                          (3311)
                                                          (4211)
                                                          (5111)
                                                          (32111)
                                                          (311111)
                                                          (11111111)
For example, the partition y = (7,4,2,1,1) has distinct parts {1,2,4,7} with median 3, so y is counted under a(15).
		

Crossrefs

For all parts: A325347, strict A359907, ranks A359908, complement A307683.
For mean instead of median: A360241, ranks A326621.
These partitions have ranks A360550, complement A360551.
For multiplicities instead of distinct parts: A360687.
The complement is counted by A360689.
A000041 counts integer partitions, strict A000009.
A000975 counts subsets with integer median.
A027193 counts odd-length partitions, strict A067659, ranks A026424.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A116608 counts partitions by number of distinct parts.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], IntegerQ[Median[Union[#]]]&]],{n,30}]

A362622 One and numbers whose prime factorization has its greatest part at a middle position.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 75, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91
Offset: 1

Views

Author

Gus Wiseman, May 12 2023

Keywords

Examples

			The prime factorization of 150 is 5*5*3*2, with middle parts {3,5}, so 150 is in the sequence.
The prime factorization of 90 is 5*3*3*2, with middle parts {3,3}, so 90 is not in the sequence.
		

Crossrefs

Partitions of this type are counted by A237824.
For modes instead of middles we have A362619, counted by A171979.
The version for median instead of middles is A362621, counted by A053263.
The complement for median is A362980, counted by A237821.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A362611 counts modes in prime factorization.
A362613 counts co-modes in prime factorization.

Programs

  • Mathematica
    mpm[q_]:=MemberQ[If[OddQ[Length[q]],{Median[q]},{q[[Length[q]/2]],q[[Length[q]/2+1]]}],Max@@q];
    Select[Range[100],#==1||mpm[Flatten[Apply[ConstantArray,FactorInteger[#],{1}]]]&]

A359891 Members of A026424 (numbers with an odd number of prime factors) whose prime indices have the same mean as median.

Original entry on oeis.org

2, 3, 5, 7, 8, 11, 13, 17, 19, 23, 27, 29, 30, 31, 32, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 105, 107, 109, 110, 113, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233
Offset: 1

Views

Author

Gus Wiseman, Jan 22 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
   2: {1}
   3: {2}
   5: {3}
   7: {4}
   8: {1,1,1}
  11: {5}
  13: {6}
  17: {7}
  19: {8}
  23: {9}
  27: {2,2,2}
  29: {10}
  30: {1,2,3}
  31: {11}
  32: {1,1,1,1,1}
For example, the prime indices of 180 are {1,1,2,2,3}, with mean 9/5 and median 2, so 180 is not in the sequence.
		

Crossrefs

A subset of A026424 = numbers with odd bigomega.
The LHS (mean of prime indices) is A326567/A326568.
This is the odd-length case of A359889, complement A359890.
The complement is A359892.
These partitions are counted by A359895, any-length A240219.
The RHS (median of prime indices) is A360005/2.
A058398 counts partitions by mean, see also A008284, A327482.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A359893 and A359901 count partitions by median, odd-length A359902.
A359908 lists numbers whose prime indices have integer median.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[PrimeOmega[#]]&&Mean[prix[#]]==Median[prix[#]]&]

Formula

Intersection of A026424 and A359889.
Previous Showing 51-60 of 80 results. Next