cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A360248 Numbers for which the prime indices do not have the same median as the distinct prime indices.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 132, 135, 136, 140, 144, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 184, 188, 189, 192, 200
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2023

Keywords

Comments

First differs from A242416 in lacking 180, with prime indices {1,1,2,2,3}.
First differs from A360246 in lacking 126 and having 1950.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
  12: {1,1,2}
  18: {1,2,2}
  20: {1,1,3}
  24: {1,1,1,2}
  28: {1,1,4}
  40: {1,1,1,3}
  44: {1,1,5}
  45: {2,2,3}
  48: {1,1,1,1,2}
  50: {1,3,3}
  52: {1,1,6}
  54: {1,2,2,2}
  56: {1,1,1,4}
  60: {1,1,2,3}
  63: {2,2,4}
  68: {1,1,7}
  72: {1,1,1,2,2}
The prime indices of 126 are {1,2,2,4} with median 2 and distinct prime indices {1,2,4} with median 2, so 126 is not in the sequence.
The prime indices of 1950 are {1,2,3,3,6} with median 3 and distinct prime indices {1,2,3,6} with median 5/2, so 1950 is in the sequence.
		

Crossrefs

These partitions are counted by A360244.
The complement is A360249, counted by A360245.
For multiplicities instead of parts: complement of A360453.
For multiplicities instead of distinct parts: complement of A360454.
For mean instead of median we have A360246, counted by A360242.
The complement for mean instead of median is A360247, counted by A360243.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.
A325347 = partitions with integer median, strict A359907, ranked by A359908.
A359893 and A359901 count partitions by median.
A360005 gives median of prime indices (times two).

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Median[prix[#]]!=Median[Union[prix[#]]]&]

A360460 Two times the median of the unordered prime signature of n; a(1) = 1.

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 2, 6, 4, 2, 2, 3, 2, 2, 2, 8, 2, 3, 2, 3, 2, 2, 2, 4, 4, 2, 6, 3, 2, 2, 2, 10, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 5, 4, 3, 2, 3, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 3, 12, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 3, 3, 2, 2, 2, 5, 8, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). Since the denominator is always 1 or 2, the median can be represented as an integer by multiplying by 2.
A number's unordered prime signature (row n of A118914) is the multiset of positive exponents in its prime factorization.

Examples

			The unordered prime signature of 2520 is {1,1,2,3}, with median 3/2, so a(2520) = 3.
		

Crossrefs

The version for divisors is A063655.
For mean instead of two times median we have A088529/A088530.
Prime signature is A124010, unordered A118914.
The version for prime indices is A360005.
The version for distinct prime indices is A360457.
The version for distinct prime factors is A360458.
The version for prime factors is A360459.
Positions of even terms are A360553.
Positions of odd terms are A360554.
The version for 0-prepended differences is A360555.
A112798 lists prime indices, length A001222, sum A056239.
A304038 lists distinct prime indices.
A325347 counts partitions w/ integer median, complement A307683.
A329976 counts partitions with median multiplicity 1.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[If[n==1,1,2*Median[Last/@FactorInteger[n]]],{n,100}]

A360558 Numbers whose multiset of prime factors (or indices, see A112798) has more adjacent equalities (or parts that have appeared before) than distinct parts.

Original entry on oeis.org

8, 16, 27, 32, 48, 64, 72, 80, 81, 96, 108, 112, 125, 128, 144, 160, 162, 176, 192, 200, 208, 216, 224, 243, 256, 272, 288, 304, 320, 324, 343, 352, 368, 384, 392, 400, 405, 416, 432, 448, 464, 480, 486, 496, 500, 512, 544, 567, 576, 592, 608, 625, 640, 648
Offset: 1

Views

Author

Gus Wiseman, Feb 20 2023

Keywords

Comments

No terms are squarefree.
Also numbers whose first differences of 0-prepended prime indices have median 0.

Examples

			The terms together with their prime indices begin:
     8: {1,1,1}
    16: {1,1,1,1}
    27: {2,2,2}
    32: {1,1,1,1,1}
    48: {1,1,1,1,2}
    64: {1,1,1,1,1,1}
    72: {1,1,1,2,2}
    80: {1,1,1,1,3}
    81: {2,2,2,2}
    96: {1,1,1,1,1,2}
   108: {1,1,2,2,2}
   112: {1,1,1,1,4}
   125: {3,3,3}
For example, the prime indices of 720 are {1,1,1,1,2,2,3} with 4 adjacent equalities and 3 distinct parts, so 720 is in the sequence.
		

Crossrefs

For equality we have A067801.
These partitions are counted by A360254.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A360005 gives median of prime indices (times 2).

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]>2*PrimeNu[#]&]

Formula

A001222(a(n)) > 2*A001221(a(n)).

A360453 Numbers for which the prime multiplicities (or sorted signature) have the same median as the distinct prime indices.

Original entry on oeis.org

1, 2, 9, 12, 18, 40, 100, 112, 125, 180, 250, 252, 300, 352, 360, 392, 396, 405, 450, 468, 504, 540, 588, 600, 612, 675, 684, 720, 756, 792, 828, 832, 882, 900, 936, 1008, 1044, 1116, 1125, 1176, 1188, 1200, 1224, 1332, 1350, 1368, 1372, 1404, 1440, 1452, 1476
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    9: {2,2}
   12: {1,1,2}
   18: {1,2,2}
   40: {1,1,1,3}
  100: {1,1,3,3}
  112: {1,1,1,1,4}
  125: {3,3,3}
  180: {1,1,2,2,3}
  250: {1,3,3,3}
  252: {1,1,2,2,4}
  300: {1,1,2,3,3}
  352: {1,1,1,1,1,5}
  360: {1,1,1,2,2,3}
For example, the prime indices of 756 are {1,1,2,2,2,4} with distinct parts {1,2,4} with median 2 and multiplicities {1,2,3} with median 2, so 756 is in the sequence.
		

Crossrefs

Without taking median we have A109298, unordered A109297.
For mean instead of median we have A324570, counted by A114638.
For indices instead of multiplicities we have A360249, counted by A360245.
For indices instead of distinct indices we have A360454, counted by A360456.
These partitions are counted by A360455.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, length A001222, sum A056239.
A240219 counts partitions with mean equal to median, ranks A359889.
A316413 = numbers whose prime indices have integer mean, distinct A326621.
A325347 = partitions with integer median, strict A359907, ranks A359908.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.
A359893 and A359901 count partitions by median.
A360005 gives median of prime indices (times two).

Programs

  • Mathematica
    Select[Range[100],#==1||Median[Last/@FactorInteger[#]]== Median[PrimePi/@First/@FactorInteger[#]]&]

A360553 Numbers > 1 whose unordered prime signature has integer median.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Feb 16 2023

Keywords

Comments

First differs from A067340 in having 60.
A number's unordered prime signature (row n of A118914) is the multiset of positive exponents in its prime factorization.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The unordered prime signature of 60 is {1,1,2}, with median 1, so 60 is in the sequence.
The unordered prime signature of 1260 is {1,1,2,2}, with median 3/2, so 1260 is not in the sequence.
		

Crossrefs

For mean instead of median we have A067340, complement A070011.
Positions of even terms in A360460.
The complement is A360554 (without 1).
These partitions are counted by A360687.
- For divisors (A063655) we have A139711, complement A139710.
- For prime indices (A360005) we have A359908, complement A359912.
- For distinct prime indices (A360457) we have A360550, complement A360551.
- For distinct prime factors (A360458) we have A360552, complement A100367.
- For prime factors (A360459) we have A359913, complement A072978.
- For prime multiplicities (A360460) we have A360553, complement A360554.
- For 0-prepended differences (A360555) we have A360556, complement A360557.
A112798 lists prime indices, length A001222, sum A056239.
A124010 lists prime signature.
A325347 = partitions w/ integer median, complement A307683, strict A359907.
A359893 and A359901 count partitions by median, odd-length A359902.
A360454 = numbers whose prime indices and signature have the same median.

Programs

  • Mathematica
    Select[Range[2,100],IntegerQ[Median[Last/@FactorInteger[#]]]&]

A360249 Numbers for which the prime indices have the same median as the distinct prime indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2023

Keywords

Comments

First differs from A072774 in having 90.
First differs from A242414 in having 180.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 126 are {1,2,2,4} with median 2 and distinct prime indices {1,2,4} with median 2, so 126 is in the sequence.
The prime indices of 180 are {1,1,2,2,3} with median 2 and distinct prime indices {1,2,3} with median 2, so 180 is in the sequence.
		

Crossrefs

These partitions are counted by A360245.
The complement for mean instead of median is A360246, counted by A360242.
For mean instead of median we have A360247, counted by A360243.
The complement is A360248, counted by A360244.
For multiplicities instead of parts: A360453, counted by A360455.
For multiplicities instead of distinct parts: A360454, counted by A360456.
A112798 lists prime indices, length A001222, sum A056239.
A240219 counts partitions with mean equal to median, ranks A359889.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.
A325347 = partitions with integer median, strict A359907, ranks A359908.
A359893 and A359901 count partitions by median.
A359894 = partitions with mean different from median, ranks A359890.
A360005 gives median of prime indices (times two).

Programs

  • Maple
    isA360249 := proc(n)
        local ifs,pidx,pe,medAll,medDist ;
        if n = 1 then
            return true ;
        end if ;
        ifs := ifactors(n)[2] ;
        pidx := [] ;
        for pe in ifs do
            numtheory[pi](op(1,pe)) ;
            pidx := [op(pidx),seq(%,i=1..op(2,pe))] ;
        end do:
        medAll := stats[describe,median](sort(pidx)) ;
        pidx := convert(convert(pidx,set),list) ;
        medDist := stats[describe,median](sort(pidx)) ;
        if medAll = medDist then
            true;
        else
            false;
        end if;
    end proc:
    for n from 1 to 130 do
        if isA360249(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, May 22 2023
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Median[prix[#]]==Median[Union[prix[#]]]&]

A360455 Number of integer partitions of n for which the distinct parts have the same median as the multiplicities.

Original entry on oeis.org

1, 1, 0, 0, 2, 1, 1, 0, 2, 2, 5, 8, 10, 14, 20, 19, 26, 31, 35, 41, 55, 65, 85, 102, 118, 151, 181, 201, 236, 281, 313, 365, 424, 495, 593, 688, 825, 978, 1181, 1374, 1650, 1948, 2323, 2682, 3175, 3680, 4314, 4930, 5718, 6546, 7532, 8557, 9777, 11067, 12622
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(11) = 8 partitions:
  1   .  .  22    221   3111   .  3311    333     3331     32222
            211                   41111   32211   33211    33221
                                                  42211    44111
                                                  322111   52211
                                                  511111   322211
                                                           332111
                                                           422111
                                                           3221111
		

Crossrefs

For mean instead of median: A114638, ranks A324570.
For parts instead of multiplicities: A360245, ranks A360249.
These partitions have ranks A360453.
For parts instead of distinct parts: A360456, ranks A360454.
A000041 counts integer partitions, strict A000009.
A116608 counts partitions by number of distinct parts.
A325347 counts partitions w/ integer median, strict A359907, ranks A359908.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Median[Length/@Split[#]]==Median[Union[#]]&]],{n,0,30}]

A361395 Positive integers k such that 2*omega(k) >= bigomega(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74
Offset: 1

Views

Author

Gus Wiseman, Mar 16 2023

Keywords

Comments

Differs from A068938 in having 1 and 4 and lacking 80.
Includes all squarefree numbers.

Examples

			The prime indices of 80 are {1,1,1,1,3}, with 5 parts and 2 distinct parts, and 2*2 < 5, so 80 is not in the sequence.
		

Crossrefs

Complement of A360558.
Positions of nonnegative terms in A361205.
These partitions are counted by A361394.
A001222 (bigomega) counts prime factors, distinct A001221 (omega).
A112798 lists prime indices, sum A056239.
A360005 gives median of prime indices (times 2), distinct A360457.
Comparing twice the number of distinct parts to the number of parts:
less: A360254, ranks A360558
equal: A239959, ranks A067801
greater: A237365, ranks A361393
less or equal: A237363, ranks A361204
greater or equal: A361394, ranks A361395

Programs

  • Mathematica
    Select[Range[100],2*PrimeNu[#]>=PrimeOmega[#]&]

Formula

A001222(a(n)) <= 2*A001221(a(n)).

A360456 Number of integer partitions of n for which the parts have the same median as the multiplicities.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 1, 2, 5, 7, 10, 14, 21, 28, 36, 51, 64, 84, 106, 132, 165, 202, 252, 311, 391, 473, 579, 713, 868, 1069, 1303, 1617, 1954, 2404, 2908, 3556, 4282, 5200, 6207, 7505, 8934, 10700, 12717, 15165, 17863, 21222, 24976, 29443, 34523, 40582, 47415
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(11) = 10 partitions:
  1   .  .  22   .  .  2221   3311    333      4222      5222
                              32111   3222     33211     33221
                                      32211    42211     52211
                                      42111    43111     53111
                                      321111   52111     62111
                                               421111    322211
                                               3211111   431111
                                                         521111
                                                         4211111
                                                         32111111
		

Crossrefs

For mean instead of median: A360068, ranks A359903.
For distinct parts instead of multiplicities: A360245, ranks A360249.
These partitions have ranks A360454.
For distinct parts instead of parts: A360455, ranks A360453.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts.
A325347 counts partitions w/ integer median, strict A359907, ranks A359908.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Median[Length/@Split[#]]==Median[#]&]],{n,0,30}]
Showing 1-9 of 9 results.