cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 116 results. Next

A360616 Half the number of prime factors of n (counted with multiplicity, A001222), rounded down.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 1, 0, 2, 1, 1, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 2, 0, 1, 1, 3, 1, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 1, 0, 2, 2, 1, 0, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 08 2023

Keywords

Examples

			The prime indices of 378 are {1,2,2,2,4}, so a(378) = floor(5/2) = 2.
		

Crossrefs

Positions of 0's are 1 and A000040.
Positions of first appearances are A000302 = 2^(2k) for k >= 0.
Positions of 1's are A168645.
Rounding up instead of down gives A360617.
A112798 lists prime indices, length A001222, sum A056239, median* A360005.
A360673 counts multisets by right sum (exclusive), inclusive A360671.
First for prime indices, second for partitions, third for prime factors:
- A360676 gives left sum (exclusive), counted by A360672, product A361200.
- A360677 gives right sum (exclusive), counted by A360675, product A361201.
- A360678 gives left sum (inclusive), counted by A360675, product A347043.
- A360679 gives right sum (inclusive), counted by A360672, product A347044.

Programs

  • Mathematica
    Table[Floor[PrimeOmega[n]/2],{n,100}]

A361801 Number of nonempty subsets of {1..n} with median n/2.

Original entry on oeis.org

0, 0, 1, 1, 4, 4, 14, 14, 49, 49, 175, 175, 637, 637, 2353, 2353, 8788, 8788, 33098, 33098, 125476, 125476, 478192, 478192, 1830270, 1830270, 7030570, 7030570, 27088870, 27088870, 104647630, 104647630, 405187825, 405187825, 1571990935, 1571990935
Offset: 0

Views

Author

Gus Wiseman, Apr 07 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The subset {1,2,3,5} of {1..5} has median 5/2, so is counted under a(5).
The subset {2,3,5} of {1..6} has median 6/2, so is counted under a(6).
The a(0) = 0 through a(7) = 14 subsets:
  .  .  {1}  {1,2}  {2}      {1,4}      {3}          {1,6}
                    {1,3}    {2,3}      {1,5}        {2,5}
                    {1,2,3}  {1,2,3,4}  {2,4}        {3,4}
                    {1,2,4}  {1,2,3,5}  {1,3,4}      {1,2,5,6}
                                        {1,3,5}      {1,2,5,7}
                                        {1,3,6}      {1,3,4,5}
                                        {2,3,4}      {1,3,4,6}
                                        {2,3,5}      {1,3,4,7}
                                        {2,3,6}      {2,3,4,5}
                                        {1,2,4,5}    {2,3,4,6}
                                        {1,2,4,6}    {2,3,4,7}
                                        {1,2,3,4,5}  {1,2,3,4,5,6}
                                        {1,2,3,4,6}  {1,2,3,4,5,7}
                                        {1,2,3,5,6}  {1,2,3,4,6,7}
		

Crossrefs

A bisection is A079309.
The case with n's has bisection A057552.
The case without n's is A100066, bisection A006134.
A central diagonal of A231147.
A version for partitions is A361849.
For mean instead of median we have A362046.
A000975 counts subsets with integer median, for mean A327475.
A007318 counts subsets by length.
A013580 appears to count subsets by median, by mean A327481.
A360005(n)/2 represents the median statistic for partitions.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Median[#]==n/2&]],{n,0,10}]

Formula

a(n) = A079309(floor(n/2)). - Alois P. Heinz, Apr 11 2023

A363488 Even numbers whose prime factorization has at least as many 2's as non-2's.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 26, 28, 32, 34, 36, 38, 40, 44, 46, 48, 52, 56, 58, 60, 62, 64, 68, 72, 74, 76, 80, 82, 84, 86, 88, 92, 94, 96, 100, 104, 106, 112, 116, 118, 120, 122, 124, 128, 132, 134, 136, 140, 142, 144, 146, 148, 152, 156, 158, 160
Offset: 1

Views

Author

Gus Wiseman, Jul 06 2023

Keywords

Comments

The multiset of prime factors of n is row n of A027746.
Also numbers whose prime factors have low median 2, where the low median (see A124943) is either the middle part (for odd length), or the least of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
     2: {1}            34: {1,7}             72: {1,1,1,2,2}
     4: {1,1}          36: {1,1,2,2}         74: {1,12}
     6: {1,2}          38: {1,8}             76: {1,1,8}
     8: {1,1,1}        40: {1,1,1,3}         80: {1,1,1,1,3}
    10: {1,3}          44: {1,1,5}           82: {1,13}
    12: {1,1,2}        46: {1,9}             84: {1,1,2,4}
    14: {1,4}          48: {1,1,1,1,2}       86: {1,14}
    16: {1,1,1,1}      52: {1,1,6}           88: {1,1,1,5}
    20: {1,1,3}        56: {1,1,1,4}         92: {1,1,9}
    22: {1,5}          58: {1,10}            94: {1,15}
    24: {1,1,1,2}      60: {1,1,2,3}         96: {1,1,1,1,1,2}
    26: {1,6}          62: {1,11}           100: {1,1,3,3}
    28: {1,1,4}        64: {1,1,1,1,1,1}    104: {1,1,1,6}
    32: {1,1,1,1,1}    68: {1,1,7}          106: {1,16}
		

Crossrefs

Partitions of this type are counted by A027336.
The case without high median > 1 is A072978.
For mode instead of median we have A360015, high A360013.
Positions of 1's in A363941.
For mean instead of median we have A363949, high A000079.
The high version is A364056, positions of 1's in A363942.
A067538 counts partitions with integer mean, ranks A316413.
A112798 lists prime indices, length A001222, sum A056239.
A124943 counts partitions by low median, high A124944.
A363943 gives low mean of prime indices, triangle A363945.

Programs

  • Mathematica
    Select[Range[100],EvenQ[#]&&PrimeOmega[#]<=2*FactorInteger[#][[1,2]]&]

A363948 Numbers whose prime indices have mean < 3/2.

Original entry on oeis.org

2, 4, 8, 12, 16, 24, 32, 48, 64, 72, 80, 96, 128, 144, 160, 192, 256, 288, 320, 384, 432, 448, 480, 512, 576, 640, 768, 864, 896, 960, 1024, 1152, 1280, 1536, 1728, 1792, 1920, 2048, 2304, 2560, 2592, 2688, 2816, 2880, 3072, 3200, 3456, 3584, 3840, 4096, 4608
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The initial terms, prime indices, and means:
    2: {1} -> 1
    4: {1,1} -> 1
    8: {1,1,1} -> 1
   12: {1,1,2} -> 4/3
   16: {1,1,1,1} -> 1
   24: {1,1,1,2} -> 5/4
   32: {1,1,1,1,1} -> 1
   48: {1,1,1,1,2} -> 6/5
   64: {1,1,1,1,1,1} -> 1
   72: {1,1,1,2,2} -> 7/5
   80: {1,1,1,1,3} -> 7/5
   96: {1,1,1,1,1,2} -> 7/6
		

Crossrefs

These partitions are counted by A363947.
Prime indices have mean A326567/A326568.
For low mode we have A360015, high A360013.
Positions of 1's in A363489.
A112798 lists prime indices, length A001222, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A360005 gives twice the median of prime indices.
A363949 ranks partitions with low mean 1, counted by A025065.
A363950 ranks partitions with low mean 2, counted by A026905 redoubled.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]<3/2&]

A359909 Number of integer factorizations of n into factors > 1 with the same mean as median.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 4, 1, 4, 2, 2, 2, 6, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 6, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 7, 1, 2, 3, 7, 2, 4, 1, 3, 2, 4, 1, 7, 1, 2, 3, 3, 2, 4, 1, 6, 4, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 3, 6, 1, 4, 1, 4, 5, 2, 1, 6, 1, 4, 2, 5, 1, 4, 2, 3, 3, 2, 2, 11
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(n) factorizations for n = 24, 36, 60, 120, 144, 360:
  24      36        60      120       144       360
  3*8     4*9       2*30    2*60      2*72      4*90
  4*6     6*6       3*20    3*40      3*48      5*72
  2*12    2*18      4*15    4*30      4*36      6*60
  2*3*4   3*12      5*12    5*24      6*24      8*45
          2*2*3*3   6*10    6*20      8*18      9*40
                    3*4*5   8*15      9*16      10*36
                            10*12     12*12     12*30
                            4*5*6     2*2*6*6   15*24
                            2*6*10    3*3*4*4   18*20
                            2*3*4*5             2*180
                                                3*120
                                                2*10*18
                                                3*4*5*6
		

Crossrefs

The version for partitions is A240219, complement A359894.
These multisets are ranked by A359889.
The version for strict partitions is A359897.
The odd-length case is A359910.
The complement is counted by A359911.
A001055 counts factorizations.
A058398 counts partitions by mean, see also A008284, A327482.
A326622 counts factorizations with integer mean, strict A328966.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Mean[#]==Median[#]&]],{n,100}]
  • PARI
    median(lista) = if((#lista)%2, lista[(1+#lista)/2], (lista[#lista/2]+lista[1+(#lista/2)])/2);
    A359909(n, m=n, facs=List([])) = if(1==n, (#facs>0 && (median(facs)==(vecsum(Vec(facs))/#facs))), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A359909(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

More terms from Antti Karttunen, Jan 20 2025

A360008 Positions of first appearances in the sequence giving the mean of prime indices (A326567/A326568).

Original entry on oeis.org

1, 3, 5, 6, 7, 11, 12, 13, 14, 17, 18, 19, 23, 24, 26, 29, 31, 37, 38, 41, 42, 43, 47, 48, 52, 53, 54, 58, 59, 61, 67, 71, 72, 73, 74, 76, 79, 83, 86, 89, 92, 96, 97, 101, 103, 104, 106, 107, 108, 109, 113, 122, 124, 127, 131, 137, 139, 142, 148, 149, 151, 152
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    1: {}
    3: {2}
    5: {3}
    6: {1,2}
    7: {4}
   11: {5}
   12: {1,1,2}
   13: {6}
   14: {1,4}
   17: {7}
   18: {1,2,2}
   19: {8}
   23: {9}
   24: {1,1,1,2}
		

Crossrefs

Positions of first appearances in A326567/A326568.
The version for median instead of mean is A360007, unsorted A360006.
A058398 counts partitions by mean, see also A008284, A327482.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A326567/A326568 gives mean of prime indices.
A359908 = numbers w/ integer median of prime indices, complement A359912.

Programs

  • Mathematica
    nn=1000;
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    seq=Table[If[n==1,1,Mean[prix[n]]],{n,nn}];
    Select[Range[nn],FreeQ[seq[[Range[#-1]]],seq[[#]]]&]

A360249 Numbers for which the prime indices have the same median as the distinct prime indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119, 121, 122, 123, 125, 126, 127, 128, 129, 130
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2023

Keywords

Comments

First differs from A072774 in having 90.
First differs from A242414 in having 180.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 126 are {1,2,2,4} with median 2 and distinct prime indices {1,2,4} with median 2, so 126 is in the sequence.
The prime indices of 180 are {1,1,2,2,3} with median 2 and distinct prime indices {1,2,3} with median 2, so 180 is in the sequence.
		

Crossrefs

These partitions are counted by A360245.
The complement for mean instead of median is A360246, counted by A360242.
For mean instead of median we have A360247, counted by A360243.
The complement is A360248, counted by A360244.
For multiplicities instead of parts: A360453, counted by A360455.
For multiplicities instead of distinct parts: A360454, counted by A360456.
A112798 lists prime indices, length A001222, sum A056239.
A240219 counts partitions with mean equal to median, ranks A359889.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.
A325347 = partitions with integer median, strict A359907, ranks A359908.
A359893 and A359901 count partitions by median.
A359894 = partitions with mean different from median, ranks A359890.
A360005 gives median of prime indices (times two).

Programs

  • Maple
    isA360249 := proc(n)
        local ifs,pidx,pe,medAll,medDist ;
        if n = 1 then
            return true ;
        end if ;
        ifs := ifactors(n)[2] ;
        pidx := [] ;
        for pe in ifs do
            numtheory[pi](op(1,pe)) ;
            pidx := [op(pidx),seq(%,i=1..op(2,pe))] ;
        end do:
        medAll := stats[describe,median](sort(pidx)) ;
        pidx := convert(convert(pidx,set),list) ;
        medDist := stats[describe,median](sort(pidx)) ;
        if medAll = medDist then
            true;
        else
            false;
        end if;
    end proc:
    for n from 1 to 130 do
        if isA360249(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, May 22 2023
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Median[prix[#]]==Median[Union[prix[#]]]&]

A360552 Numbers > 1 whose distinct prime factors have integer median.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 30, 31, 32, 33, 35, 37, 39, 41, 42, 43, 45, 47, 49, 51, 53, 55, 57, 59, 60, 61, 63, 64, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78, 79, 81, 83, 84, 85, 87, 89, 90, 91, 93, 95, 97, 99, 101, 102, 103
Offset: 1

Views

Author

Gus Wiseman, Feb 16 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime factors of 900 are {2,2,3,3,5,5}, with distinct parts {2,3,5}, with median 3, so 900 is in the sequence.
		

Crossrefs

For mean instead of median we have A078174, complement of A176587.
The complement is A100367 (without 1).
Positions of even terms in A360458.
- For divisors (A063655) we have A139711, complement A139710.
- For prime indices (A360005) we have A359908, complement A359912.
- For distinct prime indices (A360457) we have A360550, complement A360551.
- For distinct prime factors (A360458) we have A360552, complement A100367.
- For prime factors (A360459) we have A359913, complement A072978.
- For prime multiplicities (A360460) we have A360553, complement A360554.
- For 0-prepended differences (A360555) we have A360556, complement A360557.
A027746 lists prime factors, length A001222, indices A112798.
A027748 lists distinct prime factors, length A001221, indices A304038.
A323171/A323172 = mean of distinct prime factors, indices A326619/A326620.
A325347 = partitions w/ integer median, complement A307683, strict A359907.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Select[Range[2,100],IntegerQ[Median[First/@FactorInteger[#]]]&]

A363730 Numbers whose prime indices have different mean, median, and mode.

Original entry on oeis.org

42, 60, 66, 70, 78, 84, 102, 114, 130, 132, 138, 140, 150, 154, 156, 165, 170, 174, 180, 182, 186, 190, 195, 204, 220, 222, 228, 230, 231, 246, 255, 258, 260, 266, 276, 282, 285, 286, 290, 294, 308, 310, 315, 318, 322, 330, 340, 345, 348, 354, 357, 360, 364
Offset: 1

Views

Author

Gus Wiseman, Jun 24 2023

Keywords

Comments

If there are multiple modes, then the mode is automatically considered different from the mean and median; otherwise, we take the unique mode.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 180 are {1,1,2,2,3}, with mean 9/5, median 2, modes {1,2}, so 180 is in the sequence.
The prime indices of 108 are {1,1,2,2,2}, with mean 8/5, median 2, modes {2}, so 108 is not in the sequence.
The terms together with their prime indices begin:
   42: {1,2,4}
   60: {1,1,2,3}
   66: {1,2,5}
   70: {1,3,4}
   78: {1,2,6}
   84: {1,1,2,4}
  102: {1,2,7}
  114: {1,2,8}
  130: {1,3,6}
  132: {1,1,2,5}
  138: {1,2,9}
  140: {1,1,3,4}
  150: {1,2,3,3}
		

Crossrefs

These partitions are counted by A363720
For equal instead of unequal we have A363727, counted by A363719.
The version for factorizations is A363742, equal A363741.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A356862 ranks partitions with a unique mode, counted by A362608.
A359178 ranks partitions with multiple modes, counted by A362610.
A360005 gives twice the median of prime indices.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.
Just two statistics:
- (mean) = (median): A359889, counted by A240219.
- (mean) != (median): A359890, counted by A359894.
- (mean) = (mode): counted by A363723, see A363724, A363731.
- (median) = (mode): counted by A363740.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Select[Range[100],{Mean[prix[#]]}!={Median[prix[#]]}!=modes[prix[#]]&]

Formula

All three of A326567(a(n))/A326568(a(n)), A360005(a(n))/2, and A363486(a(n)) = A363487(a(n)) are different.

A360252 Numbers for which the prime indices have greater mean than the distinct prime indices.

Original entry on oeis.org

18, 50, 54, 75, 98, 108, 147, 150, 162, 242, 245, 250, 294, 324, 338, 350, 363, 375, 450, 486, 490, 500, 507, 578, 588, 605, 648, 686, 722, 726, 735, 750, 845, 847, 867, 882, 972, 1014, 1029, 1050, 1058, 1078, 1083, 1125, 1183, 1210, 1250, 1274, 1350, 1372
Offset: 1

Views

Author

Gus Wiseman, Feb 09 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    18: {1,2,2}
    50: {1,3,3}
    54: {1,2,2,2}
    75: {2,3,3}
    98: {1,4,4}
   108: {1,1,2,2,2}
   147: {2,4,4}
   150: {1,2,3,3}
   162: {1,2,2,2,2}
   242: {1,5,5}
   245: {3,4,4}
   250: {1,3,3,3}
   294: {1,2,4,4}
   324: {1,1,2,2,2,2}
For example, the prime indices of 350 are {1,3,3,4} with mean 11/4, and the distinct prime indices are {1,3,4} with mean 8/3, so 350 is in the sequence.
		

Crossrefs

For unequal instead of greater we have A360246, counted by A360242.
For equal instead of greater we have A360247, counted by A360243.
These partitions are counted by A360250.
For less instead of greater we have A360253, counted by A360251.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose indices have integer mean, distinct A326621.
A326567/A326568 gives mean of prime indices.
A326619/A326620 gives mean of distinct prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]>Mean[Union[prix[#]]]&]
Previous Showing 61-70 of 116 results. Next