cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A360552 Numbers > 1 whose distinct prime factors have integer median.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 30, 31, 32, 33, 35, 37, 39, 41, 42, 43, 45, 47, 49, 51, 53, 55, 57, 59, 60, 61, 63, 64, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78, 79, 81, 83, 84, 85, 87, 89, 90, 91, 93, 95, 97, 99, 101, 102, 103
Offset: 1

Views

Author

Gus Wiseman, Feb 16 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime factors of 900 are {2,2,3,3,5,5}, with distinct parts {2,3,5}, with median 3, so 900 is in the sequence.
		

Crossrefs

For mean instead of median we have A078174, complement of A176587.
The complement is A100367 (without 1).
Positions of even terms in A360458.
- For divisors (A063655) we have A139711, complement A139710.
- For prime indices (A360005) we have A359908, complement A359912.
- For distinct prime indices (A360457) we have A360550, complement A360551.
- For distinct prime factors (A360458) we have A360552, complement A100367.
- For prime factors (A360459) we have A359913, complement A072978.
- For prime multiplicities (A360460) we have A360553, complement A360554.
- For 0-prepended differences (A360555) we have A360556, complement A360557.
A027746 lists prime factors, length A001222, indices A112798.
A027748 lists distinct prime factors, length A001221, indices A304038.
A323171/A323172 = mean of distinct prime factors, indices A326619/A326620.
A325347 = partitions w/ integer median, complement A307683, strict A359907.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Select[Range[2,100],IntegerQ[Median[First/@FactorInteger[#]]]&]

A360686 Number of integer partitions of n whose distinct parts have integer median.

Original entry on oeis.org

1, 2, 2, 4, 3, 8, 7, 16, 17, 31, 35, 60, 67, 99, 121, 170, 200, 270, 328, 436, 522, 674, 828, 1061, 1292, 1626, 1983, 2507, 3035, 3772, 4582, 5661, 6801, 8358, 10059, 12231, 14627, 17702, 21069, 25423, 30147, 36100, 42725, 50936, 60081, 71388, 84007, 99408
Offset: 1

Views

Author

Gus Wiseman, Feb 20 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(8) = 16 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (331)      (44)
                    (31)    (11111)  (42)      (421)      (53)
                    (1111)           (51)      (511)      (62)
                                     (222)     (3211)     (71)
                                     (321)     (31111)    (422)
                                     (3111)    (1111111)  (431)
                                     (111111)             (521)
                                                          (2222)
                                                          (3221)
                                                          (3311)
                                                          (4211)
                                                          (5111)
                                                          (32111)
                                                          (311111)
                                                          (11111111)
For example, the partition y = (7,4,2,1,1) has distinct parts {1,2,4,7} with median 3, so y is counted under a(15).
		

Crossrefs

For all parts: A325347, strict A359907, ranks A359908, complement A307683.
For mean instead of median: A360241, ranks A326621.
These partitions have ranks A360550, complement A360551.
For multiplicities instead of distinct parts: A360687.
The complement is counted by A360689.
A000041 counts integer partitions, strict A000009.
A000975 counts subsets with integer median.
A027193 counts odd-length partitions, strict A067659, ranks A026424.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A116608 counts partitions by number of distinct parts.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], IntegerQ[Median[Union[#]]]&]],{n,30}]

A363729 Numbers that are not a power of a prime but whose prime indices satisfy (mean) = (median) = (mode), assuming there is a unique mode.

Original entry on oeis.org

90, 270, 525, 550, 756, 810, 1666, 1911, 1950, 2268, 2430, 2625, 2695, 2700, 2750, 5566, 6762, 6804, 6897, 7128, 7290, 8100, 8500, 9310, 9750, 10285, 10478, 11011, 11550, 11662, 12250, 12375, 12495, 13125, 13377, 13750, 14014, 14703, 18865, 19435, 20412, 21384
Offset: 1

Views

Author

Gus Wiseman, Jun 24 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 6897 are {2,5,5,8}, with mean 5, median 5, and modes {5}, so 6897 is in the sequence.
The terms together with their prime indices begin:
     90: {1,2,2,3}
    270: {1,2,2,2,3}
    525: {2,3,3,4}
    550: {1,3,3,5}
    756: {1,1,2,2,2,4}
    810: {1,2,2,2,2,3}
   1666: {1,4,4,7}
   1911: {2,4,4,6}
   1950: {1,2,3,3,6}
   2268: {1,1,2,2,2,2,4}
   2430: {1,2,2,2,2,2,3}
		

Crossrefs

For just primes instead of prime powers we have A363722.
Including prime-powers gives A363727, counted by A363719.
These partitions are counted by A363728.
For unequal instead of equal we have A363730, counted by A363720.
A000961 lists the prime powers, complement A024619.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A356862 ranks partitions with a unique mode, counted by A362608.
A359178 ranks partitions with multiple modes, counted by A362610.
A360005 gives twice the median of prime indices.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.
Just two statistics:
- (mean) = (median): A359889, counted by A240219.
- (mean) != (median): A359890, counted by A359894.
- (mean) = (mode): counted by A363723, see A363724, A363731.
- (median) = (mode): counted by A363740.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Select[Range[1000],!PrimePowerQ[#]&&{Mean[prix[#]]}=={Median[prix[#]]}==modes[prix[#]]&]

A363722 Nonprime numbers whose prime indices satisfy (mean) = (median) = (mode), assuming there is a unique mode.

Original entry on oeis.org

4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 90, 121, 125, 128, 169, 243, 256, 270, 289, 343, 361, 512, 525, 529, 550, 625, 729, 756, 810, 841, 961, 1024, 1331, 1369, 1666, 1681, 1849, 1911, 1950, 2048, 2187, 2197, 2209, 2268, 2401, 2430, 2625, 2695, 2700, 2750, 2809
Offset: 1

Views

Author

Gus Wiseman, Jun 24 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
     4: {1,1}
     8: {1,1,1}
     9: {2,2}
    16: {1,1,1,1}
    25: {3,3}
    27: {2,2,2}
    32: {1,1,1,1,1}
    49: {4,4}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
    90: {1,2,2,3}
   121: {5,5}
   125: {3,3,3}
   128: {1,1,1,1,1,1,1}
		

Crossrefs

These partitions are counted by A363719 - 1 for n > 0.
Including primes gives A363727, counted by A363719.
For prime powers instead of just primes we have A363729, counted by A363728.
For unequal instead of equal we have A363730, counted by A363720.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A356862 ranks partitions with a unique mode, counted by A362608.
A359178 ranks partitions with multiple modes, counted by A362610.
A360005 gives twice the median of prime indices.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.
Just two statistics:
- (mean) = (median): A359889, counted by A240219.
- (mean) != (median): A359890, counted by A359894.
- (mean) = (mode): counted by A363723, see A363724, A363731.
- (median) = (mode): counted by A363740.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Select[Range[100],!PrimeQ[#]&&{Mean[prix[#]]}=={Median[prix[#]]}==modes[prix[#]]&]

Formula

Complement of A000040 in A363727.
Assuming there is a unique mode, we have A326567(a(n))/A326568(a(n)) = A360005(a(n))/2 = A363486(a(n)) = A363487(a(n)).

A360681 Numbers for which the prime signature has the same median as the first differences of 0-prepended prime indices.

Original entry on oeis.org

1, 2, 6, 30, 42, 49, 60, 66, 70, 78, 84, 90, 102, 105, 114, 120, 126, 132, 138, 140, 150, 154, 156, 168, 174, 186, 198, 204, 210, 222, 228, 234, 246, 258, 264, 270, 276, 280, 282, 286, 294, 306, 308, 312, 315, 318, 330, 342, 348, 350, 354, 366, 372, 378, 385
Offset: 1

Views

Author

Gus Wiseman, Feb 19 2023

Keywords

Comments

A number's (unordered) prime signature (row n of A118914) is the multiset of positive exponents in its prime factorization.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    6: {1,2}
   30: {1,2,3}
   42: {1,2,4}
   49: {4,4}
   60: {1,1,2,3}
   66: {1,2,5}
   70: {1,3,4}
   78: {1,2,6}
   84: {1,1,2,4}
   90: {1,2,2,3}
For example, the prime indices of 2760 are {1,1,1,2,3,9}. The signature is (3,1,1,1), with median 1. The first differences of 0-prepended prime indices are (1,0,0,1,1,6), with median 1/2. So 2760 is not in the sequence.
		

Crossrefs

For distinct prime indices instead of 0-prepended differences: A360453.
For mean instead of median we have A360680.
A112798 = prime indices, length A001222, sum A056239, mean A326567/A326568.
A124010 gives prime signature, sorted A118914, mean A088529/A088530.
A325347 = partitions w/ integer median, strict A359907, complement A307683.
A359893 and A359901 count partitions by median, odd-length A359902.
Multisets with integer median:
- For divisors (A063655) we have A139711, complement A139710.
- For prime indices (A360005) we have A359908, complement A359912.
- For distinct prime indices (A360457) we have A360550, complement A360551.
- For distinct prime factors (A360458) we have A360552, complement A100367.
- For prime factors (A360459) we have A359913, complement A072978.
- For prime multiplicities (A360460) we have A360553, complement A360554.
- For 0-prepended differences (A360555) we have A360556, complement A360557.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Median[Length/@Split[prix[#]]] == Median[Differences[Prepend[prix[#],0]]]&]

A360690 Number of integer partitions of n with non-integer median of multiplicities.

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 5, 6, 8, 8, 14, 12, 21, 20, 31, 36, 57, 61, 94, 108, 157, 188, 261, 305, 409, 484, 632, 721, 942, 1083, 1376, 1585, 2004, 2302, 2860, 3304, 4103, 4742, 5849, 6745, 8281, 9599, 11706, 13605, 16481, 19176, 23078, 26838, 32145, 37387, 44465
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 0 through a(9) = 8 partitions:
  .  .  .  (211)  (221)  (411)    (322)    (332)      (441)
                  (311)  (21111)  (331)    (422)      (522)
                                  (511)    (611)      (711)
                                  (22111)  (22211)    (22221)
                                  (31111)  (41111)    (33111)
                                           (2111111)  (51111)
                                                      (2211111)
                                                      (3111111)
For example, the partition y = (3,2,2,1) has multiplicities (1,2,1), and the multiset {1,1,2} has median 1, so y is not counted under a(8).
		

Crossrefs

These partitions have ranks A360554.
The complement is counted by A360687, ranks A360553.
A058398 counts partitions by mean, see also A008284, A327482.
A124010 gives prime signature, sorted A118914, mean A088529/A088530.
A325347 = partitions w/ integer median, strict A359907, complement A307683.
A359893 and A359901 count partitions by median, odd-length A359902.
A360069 = partitions with integer mean of multiplicities, ranks A067340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !IntegerQ[Median[Length/@Split[#]]]&]],{n,30}]

A360689 Number of integer partitions of n whose distinct parts have non-integer median.

Original entry on oeis.org

0, 0, 1, 1, 4, 3, 8, 6, 13, 11, 21, 17, 34, 36, 55, 61, 97, 115, 162, 191, 270, 328, 427, 514, 666, 810, 1027, 1211, 1530, 1832, 2260, 2688, 3342, 3952, 4824, 5746, 7010, 8313, 10116, 11915, 14436, 17074, 20536, 24239, 29053, 34170, 40747, 47865, 56830, 66621
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 0 through a(9) = 13 partitions:
  .  .  (21)  (211)  (32)    (411)    (43)      (332)      (54)
                     (41)    (2211)   (52)      (611)      (63)
                     (221)   (21111)  (61)      (22211)    (72)
                     (2111)           (322)     (41111)    (81)
                                      (2221)    (221111)   (441)
                                      (4111)    (2111111)  (522)
                                      (22111)              (3222)
                                      (211111)             (6111)
                                                           (22221)
                                                           (222111)
                                                           (411111)
                                                           (2211111)
                                                           (21111111)
For example, the partition y = (5,3,3,2,1,1) has distinct parts {1,2,3,5}, with median 5/2, so y is counted under a(15).
		

Crossrefs

For not just distinct parts: A307683, complement A325347, ranks A359912.
These partitions have ranks A360551.
The complement is counted by A360686, strict A359907, ranks A360550.
For multiplicities instead of distinct parts we have A360690, ranks A360554.
A000041 counts integer partitions, strict A000009.
A116608 counts partitions by number of distinct parts.
A359893 and A359901 count partitions by median, odd-length A359902.
A360457 gives median of distinct prime indices (times 2).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!IntegerQ[Median[Union[#]]]&]],{n,30}]
Previous Showing 11-17 of 17 results.