A363731 Number of integer partitions of n whose mean is a mode but not the only mode.
0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 5, 0, 1, 8, 5, 0, 12, 0, 19, 14, 2, 0, 52, 21, 3, 23, 59, 0, 122, 0, 97, 46, 6, 167, 303, 0, 8, 82, 559, 0, 543, 0, 355, 745, 15, 0, 1685, 510, 1083, 251, 840, 0, 2325, 1832, 3692, 426, 34, 0, 9599
Offset: 0
Keywords
Examples
The a(n) partitions for n = 6, 9, 12, 15, 18: (3,2,1) (4,3,2) (5,4,3) (6,5,4) (7,6,5) (5,3,1) (6,4,2) (7,5,3) (8,6,4) (7,4,1) (8,5,2) (9,6,3) (6,3,2,1) (9,5,1) (10,6,2) (3,3,2,2,1,1) (4,4,3,3,1) (11,6,1) (5,3,3,2,2) (4,4,3,3,2,2) (5,4,3,2,1) (5,5,3,3,1,1) (7,3,3,1,1) (6,4,3,3,1,1) (7,3,3,2,2,1) (8,3,3,2,1,1) (3,3,3,2,2,2,1,1,1) (6,2,2,2,2,1,1,1,1)
Crossrefs
For any number of modes we have A363724.
Programs
-
Mathematica
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; Table[Length[Select[IntegerPartitions[n],MemberQ[modes[#],Mean[#]]&&!{Mean[#]}==modes[#]&]],{n,30}]
Comments