cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A363947 Number of integer partitions of n with mean < 3/2.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 4, 4, 4, 7, 7, 7, 12, 12, 12, 19, 19, 19, 30, 30, 30, 45, 45, 45, 67, 67, 67, 97, 97, 97, 139, 139, 139, 195, 195, 195, 272, 272, 272, 373, 373, 373, 508, 508, 508, 684, 684, 684, 915, 915, 915, 1212, 1212, 1212, 1597, 1597, 1597, 2087
Offset: 0

Views

Author

Gus Wiseman, Jul 02 2023

Keywords

Examples

			The partition y = (2,2,1) has mean 5/3, which is not less than 3/2, so y is not counted under 5.
The a(1) = 1 through a(8) = 4 partitions:
  (1)  (11)  (111)  (211)   (2111)   (21111)   (22111)    (221111)
                    (1111)  (11111)  (111111)  (31111)    (311111)
                                               (211111)   (2111111)
                                               (1111111)  (11111111)
		

Crossrefs

The high version is A000012 (all ones).
This is A000070 with each term repeated three times (see A025065 for two).
These partitions have ranks A363948.
The complement is counted by A364059.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean, median A000975.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A327482 counts partitions by integer mean.
A349156 counts partitions with non-integer mean, ranks A348551.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Round[Mean[#]]==1&]],{n,0,15}]

A363952 Number of integer partitions of n with low mode k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 1, 0, 1, 0, 4, 2, 0, 0, 1, 0, 7, 2, 1, 0, 0, 1, 0, 9, 3, 2, 0, 0, 0, 1, 0, 13, 5, 2, 1, 0, 0, 0, 1, 0, 18, 6, 3, 2, 0, 0, 0, 0, 1, 0, 26, 9, 3, 2, 1, 0, 0, 0, 0, 1, 0, 32, 13, 5, 3, 2, 0, 0, 0, 0, 0, 1, 0, 47, 16, 7, 3, 2, 1, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 07 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
Extending the terminology of A124943, the "low mode" of a multiset is the least mode.

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   2   0   1
   0   3   1   0   1
   0   4   2   0   0   1
   0   7   2   1   0   0   1
   0   9   3   2   0   0   0   1
   0  13   5   2   1   0   0   0   1
   0  18   6   3   2   0   0   0   0   1
   0  26   9   3   2   1   0   0   0   0   1
   0  32  13   5   3   2   0   0   0   0   0   1
   0  47  16   7   3   2   1   0   0   0   0   0   1
   0  60  21  10   4   3   2   0   0   0   0   0   0   1
   0  79  30  13   6   3   2   1   0   0   0   0   0   0   1
   0 104  38  17   7   4   3   2   0   0   0   0   0   0   0   1
Row n = 8 counts the following partitions:
  .  (71)        (62)     (53)   (44)  .  .  .  (8)
     (611)       (422)    (332)
     (521)       (3221)
     (5111)      (2222)
     (431)       (22211)
     (4211)
     (41111)
     (3311)
     (32111)
     (311111)
     (221111)
     (2111111)
     (11111111)
		

Crossrefs

Row sums are A000041.
For median: A124943 (high A124944), rank statistic A363941 (high A363942).
Column k = 1 is A241131 (partitions w/ low mode 1), ranks A360015, A360013.
The rank statistic for this triangle is A363486.
For mean: A363945 (high A363946), rank statistic A363943 (high A363944).
The high version is A363953.
A008284 counts partitions by length, A058398 by mean.
A362612 counts partitions (max part) = (unique mode), ranks A362616.
A362614 counts partitions by number of modes, rank statistic A362611.
A362615 counts partitions by number of co-modes, rank statistic A362613.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n], If[Length[#]==0,0,First[modes[#]]]==k&]],{n,0,15},{k,0,n}]

A363729 Numbers that are not a power of a prime but whose prime indices satisfy (mean) = (median) = (mode), assuming there is a unique mode.

Original entry on oeis.org

90, 270, 525, 550, 756, 810, 1666, 1911, 1950, 2268, 2430, 2625, 2695, 2700, 2750, 5566, 6762, 6804, 6897, 7128, 7290, 8100, 8500, 9310, 9750, 10285, 10478, 11011, 11550, 11662, 12250, 12375, 12495, 13125, 13377, 13750, 14014, 14703, 18865, 19435, 20412, 21384
Offset: 1

Views

Author

Gus Wiseman, Jun 24 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 6897 are {2,5,5,8}, with mean 5, median 5, and modes {5}, so 6897 is in the sequence.
The terms together with their prime indices begin:
     90: {1,2,2,3}
    270: {1,2,2,2,3}
    525: {2,3,3,4}
    550: {1,3,3,5}
    756: {1,1,2,2,2,4}
    810: {1,2,2,2,2,3}
   1666: {1,4,4,7}
   1911: {2,4,4,6}
   1950: {1,2,3,3,6}
   2268: {1,1,2,2,2,2,4}
   2430: {1,2,2,2,2,2,3}
		

Crossrefs

For just primes instead of prime powers we have A363722.
Including prime-powers gives A363727, counted by A363719.
These partitions are counted by A363728.
For unequal instead of equal we have A363730, counted by A363720.
A000961 lists the prime powers, complement A024619.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A356862 ranks partitions with a unique mode, counted by A362608.
A359178 ranks partitions with multiple modes, counted by A362610.
A360005 gives twice the median of prime indices.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.
Just two statistics:
- (mean) = (median): A359889, counted by A240219.
- (mean) != (median): A359890, counted by A359894.
- (mean) = (mode): counted by A363723, see A363724, A363731.
- (median) = (mode): counted by A363740.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Select[Range[1000],!PrimePowerQ[#]&&{Mean[prix[#]]}=={Median[prix[#]]}==modes[prix[#]]&]

A363953 Number of integer partitions of n with high mode k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 4, 2, 2, 1, 1, 1, 0, 7, 2, 1, 2, 1, 1, 1, 0, 9, 4, 2, 2, 2, 1, 1, 1, 0, 13, 6, 2, 2, 2, 2, 1, 1, 1, 0, 18, 7, 4, 3, 3, 2, 2, 1, 1, 1, 0, 26, 10, 5, 2, 3, 3, 2, 2, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 07 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
Extending the terminology of A124944, the "high mode" in a multiset is the greatest mode.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  2  1  1  1
  0  3  1  1  1  1
  0  4  2  2  1  1  1
  0  7  2  1  2  1  1  1
  0  9  4  2  2  2  1  1  1
  0 13  6  2  2  2  2  1  1  1
  0 18  7  4  3  3  2  2  1  1  1
  0 26 10  5  2  3  3  2  2  1  1  1
  0 32 15  8  4  4  4  3  2  2  1  1  1
  0 47 19  9  5  3  4  4  3  2  2  1  1  1
  0 60 26 13  7  5  5  5  4  3  2  2  1  1  1
  0 79 34 18 10  6  5  5  5  4  3  2  2  1  1  1
Row n = 9 counts the following partitions:
  .  (711)        (522)     (333)   (441)  (54)   (63)   (72)  (81)  (9)
     (6111)       (4221)    (3321)  (432)  (531)  (621)
     (5211)       (3222)
     (51111)      (32211)
     (4311)       (22221)
     (42111)      (222111)
     (411111)
     (33111)
     (321111)
     (3111111)
     (2211111)
     (21111111)
     (111111111)
		

Crossrefs

Row sums are A000041.
For median: A124944 (low A124943), rank statistic A363942 (low A363941).
Column k = 1 is A241131 (partitions w/ high mode 1), ranks A360013, A360015.
The rank statistic for this triangle is A363487, low A363486.
For mean: A363946 (low A363945), rank statistic A363944 (low A363943).
The low version is A363952.
A008284 counts partitions by length, A058398 by mean.
A362612 counts partitions (max part) = (unique mode), ranks A362616.
A362614 counts partitions by number of modes, rank statistic A362611.
A362615 counts partitions by number of co-modes, rank statistic A362613.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n], If[Length[#]==0,0,Last[modes[#]]]==k&]],{n,0,15},{k,0,n}]

A363726 Number of odd-length integer partitions of n with a unique mode.

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 22, 26, 39, 50, 67, 86, 118, 148, 196, 245, 315, 394, 507, 629, 792, 979, 1231, 1503, 1873, 2286, 2814, 3424, 4194, 5073, 6183, 7449, 9014, 10827, 13055, 15603, 18713, 22308, 26631, 31646, 37641, 44559, 52835, 62374, 73671
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(1) = 1 through a(8) = 8 partitions:
  (1)  (2)  (3)    (4)    (5)      (6)      (7)        (8)
            (111)  (211)  (221)    (222)    (322)      (332)
                          (311)    (411)    (331)      (422)
                          (11111)  (21111)  (511)      (611)
                                            (22111)    (22211)
                                            (31111)    (32111)
                                            (1111111)  (41111)
                                                       (2111111)
		

Crossrefs

The constant case is A001227.
Allowing multiple modes gives A027193, ranks A026424.
Allowing any length gives A362608, ranks A356862.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A359893 and A359901 count partitions by median.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n], Length[modes[#]]==1&&OddQ[Length[#]]&]],{n,30}]

A362562 Number of non-constant integer partitions of n having a unique mode equal to the mean.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 4, 0, 3, 3, 7, 0, 12, 0, 18, 12, 9, 0, 52, 12, 14, 33, 54, 0, 121, 0, 98, 76, 31, 100, 343, 0, 45, 164, 493, 0, 548, 0, 483, 757, 88, 0, 1789, 289, 979, 645, 1290, 0, 2225, 1677, 3371, 1200, 221, 0, 10649
Offset: 0

Views

Author

Gus Wiseman, Jun 27 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(8) = 1 through a(16) = 7 partitions:
  (3221)  .  (32221)  .  (4332)    .  (3222221)  (43332)  (5443)
                         (5331)       (3322211)  (53331)  (6442)
                         (322221)     (4222211)  (63321)  (7441)
                         (422211)                         (32222221)
                                                          (33222211)
                                                          (42222211)
                                                          (52222111)
		

Crossrefs

Partitions containing their mean are counted by A237984, ranks A327473.
Partitions missing their mean are counted by A327472, ranks A327476.
Allowing constant partitions gives A363723.
Including median also gives A363728, ranks A363729.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A359893 and A359901 count partitions by median.
A362608 counts partitions with a unique mode.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],!SameQ@@#&&{Mean[#]}==modes[#]&]],{n,0,30}]

A363722 Nonprime numbers whose prime indices satisfy (mean) = (median) = (mode), assuming there is a unique mode.

Original entry on oeis.org

4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 90, 121, 125, 128, 169, 243, 256, 270, 289, 343, 361, 512, 525, 529, 550, 625, 729, 756, 810, 841, 961, 1024, 1331, 1369, 1666, 1681, 1849, 1911, 1950, 2048, 2187, 2197, 2209, 2268, 2401, 2430, 2625, 2695, 2700, 2750, 2809
Offset: 1

Views

Author

Gus Wiseman, Jun 24 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
     4: {1,1}
     8: {1,1,1}
     9: {2,2}
    16: {1,1,1,1}
    25: {3,3}
    27: {2,2,2}
    32: {1,1,1,1,1}
    49: {4,4}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
    90: {1,2,2,3}
   121: {5,5}
   125: {3,3,3}
   128: {1,1,1,1,1,1,1}
		

Crossrefs

These partitions are counted by A363719 - 1 for n > 0.
Including primes gives A363727, counted by A363719.
For prime powers instead of just primes we have A363729, counted by A363728.
For unequal instead of equal we have A363730, counted by A363720.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A356862 ranks partitions with a unique mode, counted by A362608.
A359178 ranks partitions with multiple modes, counted by A362610.
A360005 gives twice the median of prime indices.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.
Just two statistics:
- (mean) = (median): A359889, counted by A240219.
- (mean) != (median): A359890, counted by A359894.
- (mean) = (mode): counted by A363723, see A363724, A363731.
- (median) = (mode): counted by A363740.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Select[Range[100],!PrimeQ[#]&&{Mean[prix[#]]}=={Median[prix[#]]}==modes[prix[#]]&]

Formula

Complement of A000040 in A363727.
Assuming there is a unique mode, we have A326567(a(n))/A326568(a(n)) = A360005(a(n))/2 = A363486(a(n)) = A363487(a(n)).

A381079 Number of integer partitions of n whose greatest multiplicity is equal to their sum of distinct parts.

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 0, 3, 1, 3, 1, 2, 0, 7, 2, 6, 7, 11, 3, 19, 8, 22, 16, 32, 17, 48, 21, 50, 39, 71, 35, 101, 58, 120, 89, 156, 97, 228, 133, 267, 203, 352, 228, 483, 322, 571, 444, 734, 524, 989, 683, 1160, 942, 1490, 1103, 1919, 1438, 2302, 1890, 2881, 2243, 3683, 2842, 4384, 3703, 5461
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2025

Keywords

Comments

Are there only 4 zeros?

Examples

			The partition (3,2,2,1,1,1,1,1,1) has greatest multiplicity 6 and distinct parts (3,2,1) with sum 6, so is counted under a(13).
The a(1) = 1 through a(13) = 7 partitions:
  1  .  .  22  2111  .  2221   22211  333     331111  5111111   .  33331
                        22111         222111          32111111     322222
                        31111         411111                       3331111
                                                                   4411111
                                                                   61111111
                                                                   322111111
                                                                   421111111
		

Crossrefs

For greatest part instead of multiplicity we have A000005.
Counting partitions by the LHS gives A091602, rank statistic A051903.
Counting partitions by the RHS gives A116861, rank statistic A066328.
These partitions are ranked by A381632, for part instead of multiplicity A246655.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A047993 counts balanced partitions, ranks A106529.
A091605 counts partitions with greatest multiplicity 2.
A240312 counts partitions with max part = max multiplicity, ranks A381542.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Max@@Length/@Split[#]==Total[Union[#]]&]],{n,0,30}]

A381544 Number of integer partitions of n not containing more ones than any other part.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 7, 8, 13, 17, 24, 30, 45, 54, 75, 97, 127, 160, 212, 263, 342, 427, 541, 672, 851, 1046, 1307, 1607, 1989, 2428, 2993, 3631, 4443, 5378, 6533, 7873, 9527, 11424, 13752, 16447, 19701, 23470, 28016, 33253, 39537, 46801, 55428, 65408, 77238
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2025

Keywords

Examples

			The a(2) = 1 through a(9) = 17 partitions:
  (2)  (3)   (4)   (5)    (6)     (7)     (8)      (9)
       (21)  (22)  (32)   (33)    (43)    (44)     (54)
             (31)  (41)   (42)    (52)    (53)     (63)
                   (221)  (51)    (61)    (62)     (72)
                          (222)   (322)   (71)     (81)
                          (321)   (331)   (332)    (333)
                          (2211)  (421)   (422)    (432)
                                  (2221)  (431)    (441)
                                          (521)    (522)
                                          (2222)   (531)
                                          (3221)   (621)
                                          (3311)   (3222)
                                          (22211)  (3321)
                                                   (4221)
                                                   (22221)
                                                   (32211)
                                                   (222111)
		

Crossrefs

The complement is counted by A241131, ranks A360013 = 2*A360015 (if we prepend 1).
The Heinz numbers of these partitions are A381439.
The case of equality is A382303, ranks A360014.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A047993 counts partitions with max part = length, ranks A106529.
A091602 counts partitions by the greatest multiplicity, rank statistic A051903.
A116598 counts ones in partitions, rank statistic A007814.
A239964 counts partitions with max multiplicity = length, ranks A212166.
A240312 counts partitions with max part = max multiplicity, ranks A381542.
A382302 counts partitions with max = max multiplicity = distinct length, ranks A381543.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[#,1]<=Max@@Length/@Split[DeleteCases[#,1]]&]],{n,0,30}]

A382303 Number of integer partitions of n with exactly as many ones as the next greatest multiplicity.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 3, 2, 4, 5, 8, 6, 15, 13, 19, 25, 33, 36, 54, 58, 80, 96, 122, 141, 188, 217, 274, 326, 408, 474, 600, 695, 859, 1012, 1233, 1440, 1763, 2050, 2475, 2899, 3476, 4045, 4850, 5630, 6695, 7797, 9216, 10689, 12628, 14611, 17162, 19875, 23253
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2025

Keywords

Examples

			The a(3) = 1 through a(10) = 8 partitions:
  (21)  (31)  (41)  (51)    (61)   (71)    (81)      (91)
                    (321)   (421)  (431)   (531)     (541)
                    (2211)         (521)   (621)     (631)
                                   (3311)  (32211)   (721)
                                           (222111)  (4321)
                                                     (4411)
                                                     (33211)
                                                     (42211)
		

Crossrefs

First differences of A241131, ranks A360013 = 2*A360015 (if we prepend 1).
The Heinz numbers of these partitions are A360014.
Equal case of A381544 (ranks A381439).
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A047993 counts partitions with max = length, ranks A106529.
A091602 counts partitions by the greatest multiplicity, rank statistic A051903.
A116598 counts ones in partitions, rank statistic A007814.
A239964 counts partitions with max multiplicity = length, ranks A212166.
A240312 counts partitions with max = max multiplicity, ranks A381542.
A382302 counts partitions with max = max multiplicity = distinct length, ranks A381543.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[#,1]==Max@@Length/@Split[DeleteCases[#,1]]&]],{n,0,30}]
Previous Showing 11-20 of 23 results. Next