cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A366373 a(n) = gcd(n, A332214(n)), where A332214 is the Mersenne-prime fixing variant of permutation A163511.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 6, 7, 8, 9, 2, 1, 12, 1, 14, 5, 16, 1, 18, 1, 4, 21, 2, 1, 24, 1, 2, 1, 28, 1, 10, 31, 32, 3, 2, 7, 36, 1, 2, 1, 8, 1, 42, 1, 4, 15, 2, 1, 48, 7, 2, 1, 4, 1, 2, 5, 56, 3, 2, 1, 20, 1, 62, 1, 64, 1, 6, 1, 4, 3, 14, 1, 72, 1, 2, 25, 4, 1, 2, 1, 16, 27, 2, 1, 84, 5, 2, 1, 8, 1, 30, 7, 4, 93, 2, 1, 96
Offset: 0

Views

Author

Antti Karttunen, Oct 08 2023

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(n, A366372(n)) = gcd(A332214(n), A366372(n)).
For n >= 1, a(n) = n / A366374(n)
a(n) = A332214(n) / A366375(n).

A364254 a(n) = gcd(n, A332215(n)).

Original entry on oeis.org

1, 1, 3, 2, 5, 6, 7, 4, 1, 10, 1, 12, 1, 14, 1, 8, 1, 2, 1, 20, 1, 2, 23, 24, 1, 2, 9, 28, 1, 2, 31, 16, 1, 2, 1, 4, 1, 2, 1, 40, 1, 2, 1, 4, 3, 46, 1, 48, 1, 2, 1, 4, 1, 18, 1, 56, 1, 2, 1, 4, 1, 62, 1, 32, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 15, 4, 1, 2, 1, 80, 1, 2, 1, 4, 5, 2, 1, 8, 1, 6, 13, 92, 1, 2, 1, 96, 1, 2, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Jul 16 2023

Keywords

Crossrefs

Cf. also A364255.

Formula

a(n) = gcd(n, A364253(n)) = gcd(A332215(n), A364253(n)).

A364256 a(n) = gcd(n, A243071(n)).

Original entry on oeis.org

1, 1, 3, 2, 1, 6, 1, 4, 1, 2, 1, 12, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 24, 1, 2, 9, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 43, 4, 5, 2, 1, 48, 1, 2, 1, 4, 1, 18, 1, 8, 1, 2, 1, 4, 1, 2, 3, 32, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 3, 4, 11, 2, 1, 16, 1, 2, 1, 4, 1, 86, 1, 8, 1, 10, 7, 4, 1, 2, 1, 96, 1, 2, 11, 4
Offset: 1

Views

Author

Antti Karttunen, Jul 17 2023

Keywords

Comments

Primes p such that a(p) = p are those that occur as factors of (2^A000720(p))-1: 3, 43, 49477. Are there any more of them?

Crossrefs

Cf. A243071.
Cf. also A364254, A364255.

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A243071(n) = if(n<=2, n-1, if(!(n%2), 2*A243071(n/2), 1+(2*A243071(A064989(n)))));
    A364256(n) = gcd(n, A243071(n));

A364949 a(n) = gcd(A348717(n), A348717(A163511(n))).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 8, 4, 2, 2, 12, 2, 2, 2, 16, 2, 18, 2, 4, 2, 2, 2, 24, 4, 2, 2, 4, 2, 2, 2, 32, 2, 2, 2, 36, 2, 2, 2, 8, 2, 6, 2, 4, 2, 2, 2, 48, 4, 10, 2, 4, 2, 2, 2, 8, 2, 2, 2, 4, 2, 2, 2, 64, 2, 6, 2, 4, 2, 10, 2, 72, 2, 2, 18, 4, 2, 2, 2, 16, 8, 2, 2, 12, 2, 2, 2, 8, 2, 6, 10, 4, 2, 2, 2, 96, 2, 2, 4, 20
Offset: 1

Views

Author

Antti Karttunen, Aug 16 2023

Keywords

Crossrefs

Programs

  • PARI
    A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A348717(n) = if(1==n, 1, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f));
    A364949(n) = gcd(A348717(n),A348717(A163511(n)));

Formula

a(n) = gcd(A348717(n), A364297(n)).
a(2*n) = A364255(2*n) = 2*A364255(n). (Edited Sep 03 2023)

A364493 a(n) = A364491(n) * A364492(n).

Original entry on oeis.org

0, 2, 2, 1, 2, 45, 1, 35, 2, 3, 45, 275, 1, 195, 35, 105, 2, 1377, 3, 2375, 45, 175, 275, 1127, 1, 45, 195, 945, 35, 609, 105, 341, 2, 891, 1377, 875, 3, 13875, 2375, 13377, 45, 9225, 175, 10535, 275, 735, 1127, 5687, 1, 6615, 45, 8925, 195, 5565, 945, 35, 35, 399, 609, 3245, 105, 2013, 341, 819, 2, 47385, 891
Offset: 0

Views

Author

Antti Karttunen, Jul 26 2023

Keywords

Crossrefs

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A054429(n) = ((3<<#binary(n\2))-n-1);
    A163511(n) = if(!n,1,A005940(1+A054429(n)))
    A364493(n) = { my(u=A163511(n)); (n/gcd(n,u))*(u/gcd(n,u)); };
    
  • Python
    from math import gcd
    from sympy import nextprime
    def A364493(n):
        c, p, k = 1, 1, n
        while k:
            c *= (p:=nextprime(p))**(s:=(~k&k-1).bit_length())
            k >>= s+1
        return n*c*p//gcd(c*p,n)**2 # Chai Wah Wu, Jul 26 2023

Formula

a(n) = lcm(n, A163511(n)) / A364255(n).
a(n) = 1 <=> A364258(n) = 0 <=> A364288(n) = 0.

A374469 The odd part of gcd(n, A163511(n)).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 3, 1, 1, 3, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 9, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 5, 1, 1, 1, 1, 11, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 5, 1, 9, 1, 1, 5, 1, 7, 1, 1, 1, 27, 1, 1, 3, 5, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 105
Offset: 0

Views

Author

Antti Karttunen, Aug 07 2024

Keywords

Crossrefs

Cf. A000265, A006519, A007814, A163511, A364255, A364495 (fixed points).

Programs

Formula

a(n) = A000265(A364255(n)) = A000265(gcd(n, A163511(n))).
For n >= 1, a(n) = A364255(n) / A006519(n).
For n >= 0, a(2*n) = a(n).

A374477 Lexicographically earliest infinite sequence such that a(i) = a(j) => A348717(i) = A348717(j) and A374469(i) = A374469(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 2, 5, 2, 6, 7, 8, 2, 9, 2, 10, 11, 12, 2, 13, 2, 14, 15, 16, 2, 17, 18, 19, 6, 20, 2, 21, 2, 22, 23, 24, 25, 26, 2, 27, 16, 28, 2, 29, 2, 30, 9, 31, 2, 32, 4, 33, 19, 34, 2, 35, 36, 37, 38, 39, 2, 40, 2, 41, 14, 42, 10, 43, 2, 44, 45, 46, 2, 47, 2, 48, 49, 50, 51, 52, 2, 53, 54, 55, 2, 56, 57, 58, 31, 59, 2, 60, 8, 61, 62, 63, 19, 64, 2, 65, 20, 66
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2024

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A348717(n), A374469(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A348717(n) = if(1==n, 1, my(f = factor(n), k = primepi(f[1, 1])-1); for (i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])-k)); factorback(f));
    A000265(n) = (n>>valuation(n,2));
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A364255(n) = gcd(n, A163511(n));
    A374469(n) = A000265(A364255(n));
    Aux374477(n) = [A348717(n), A374469(n)];
    v374477 = rgs_transform(vector(up_to, n, Aux374477(n)));
    A374477(n) = v374477[n];
Previous Showing 11-17 of 17 results.