cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A365068 Number of integer partitions of n with some part that can be written as a nonnegative linear combination of the other distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 7, 10, 16, 23, 34, 44, 67, 85, 119, 157, 210, 268, 360, 453, 592, 748, 956, 1195, 1520, 1883, 2365, 2920, 3628, 4451, 5494, 6702, 8211, 9976, 12147, 14666, 17776, 21389, 25774, 30887, 37035, 44224, 52819, 62836, 74753, 88614, 105062, 124160
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2023

Keywords

Comments

These may be called "non-binary nonnegative combination-full" partitions.
Does not necessarily include all non-strict partitions (A047967).

Examples

			The partition (5,4,3,3) has no part that can be written as a nonnegative linear combination of the others, so is not counted under a(15).
The partition (6,4,3,2) has 6 = 1*2 + 1*4, so is counted under a(15). The combinations 6 = 2*3 = 3*2 and 4 = 2*2 can also be used.
The a(3) = 1 through a(8) = 16 partitions:
  (21)  (31)   (41)    (42)     (61)      (62)
        (211)  (221)   (51)     (331)     (71)
               (311)   (321)    (421)     (422)
               (2111)  (411)    (511)     (431)
                       (2211)   (2221)    (521)
                       (3111)   (3211)    (611)
                       (21111)  (4111)    (3221)
                                (22111)   (3311)
                                (31111)   (4211)
                                (211111)  (5111)
                                          (22211)
                                          (32111)
                                          (41111)
                                          (221111)
                                          (311111)
                                          (2111111)
		

Crossrefs

The complement for sums instead of combinations is A237667, binary A236912.
For sums instead of combinations we have A237668, binary A237113.
The strict case is A364839, complement A364350.
Allowing equal parts in the combination gives A364913.
For subsets instead of partitions we have A364914, complement A326083.
The complement is A364915.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A323092 counts double-free partitions, ranks A320340.
A364912 counts linear combinations of partitions of k.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]}, Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], Function[ptn,Or@@Table[combs[ptn[[k]], DeleteCases[ptn,ptn[[k]]]]!={}, {k,Length[ptn]}]]]],{n,0,5}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365068(n):
        if n <= 1: return 0
        alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 0
        for p in partitions(n,k=n-1):
            s = set(p)
            if any(set(t).issubset(s-{q}) for q in s for t in alist[q]):
                c += 1
        return c # Chai Wah Wu, Sep 20 2023

Extensions

a(31)-a(47) from Chai Wah Wu, Sep 20 2023

A364908 Number of ways to write n as a nonnegative linear combination of an integer composition of n.

Original entry on oeis.org

1, 1, 4, 15, 70, 314, 1542, 7428, 36860, 182911, 917188, 4612480, 23323662, 118273428, 601762636, 3069070533, 15689123386, 80356953555, 412300910566, 2118715503962, 10902791722490, 56175374185014, 289766946825180, 1496239506613985, 7733302967423382
Offset: 0

Views

Author

Gus Wiseman, Aug 22 2023

Keywords

Comments

A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).

Examples

			The a(3) = 15 ways to write 3 as a nonnegative linear combination of an integer composition of 3:
  1*3  0*2+3*1  1*1+1*2  0*1+0*1+3*1
       1*2+1*1  3*1+0*2  0*1+1*1+2*1
                         0*1+2*1+1*1
                         0*1+3*1+0*1
                         1*1+0*1+2*1
                         1*1+1*1+1*1
                         1*1+2*1+0*1
                         2*1+0*1+1*1
                         2*1+1*1+0*1
                         3*1+0*1+0*1
		

Crossrefs

The case with no zero coefficients is A011782.
The version for partitions is A364907, strict A364910.
The strict case is A364909.
A000041 counts integer partitions, strict A000009.
A011782 counts compositions, strict A032020.
A097805 counts compositions by length, strict A072574.
A116861 = positive linear combinations of strict ptns of k, reverse A364916.
A365067 = nonnegative linear combinations of strict partitions of k.
A364912 = positive linear combinations of partitions of k.
A364916 = positive linear combinations of strict partitions of k.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, `if`(m=0, 1, 0),
          add(add(b(n-i, m-i*j), j=0..m/i), i=1..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 28 2024
  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]}, Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Join@@Table[combs[n,ptn],{ptn,Join@@Permutations /@ IntegerPartitions[n]}]],{n,0,5}]

Extensions

a(8)-a(24) from Alois P. Heinz, Jan 28 2024

A364909 Number of ways to write n as a nonnegative linear combination of a strict integer composition of n.

Original entry on oeis.org

1, 1, 1, 5, 5, 7, 51, 45, 89, 109, 709, 733, 1495, 1935, 3119, 13785, 16611, 29035, 44611, 68733, 95193, 372897, 435007, 781345, 1177181, 1866659, 2600537, 3906561, 12052631, 14610799, 25407653, 37652265, 59943351, 84060993, 128112805, 172172117, 480353257, 578740011
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2023

Keywords

Comments

A way of writing n as a (presumed nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).

Examples

			The a(0) = 1 through a(5) = 7 ways:
  .  1*1  1*2  1*3      1*4      1*5
               0*2+3*1  0*3+4*1  0*4+5*1
               1*1+1*2  1*1+1*3  1*1+1*4
               1*2+1*1  1*3+1*1  1*2+1*3
               3*1+0*2  4*1+0*3  1*3+1*2
                                 1*4+1*1
                                 5*1+0*4
		

Crossrefs

The case with no zero coefficients is A032020.
The version for partitions is A364907, strict A364910(n) = A364916(n,n).
The non-strict version is A364908.
A000041 counts integer partitions, strict A000009.
A011782 counts compositions, strict A032020.
A008284 counts partitions by length, strict A008289.
A097805 counts compositions by length, strict A072574.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Join@@Table[combs[n,ptn],{ptn,Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&]}]],{n,0,5}]
  • Python
    from math import factorial
    from sympy.utilities.iterables import partitions
    def A364909(n):
        if n == 0: return 1
        aset = tuple(set(p) for p in partitions(n) if max(p.values(),default=0)==1)
        return sum(factorial(len(t)) for p in partitions(n) for t in aset if set(p).issubset(t)) # Chai Wah Wu, Sep 21 2023

Extensions

a(18)-a(37) from Chai Wah Wu, Sep 21 2023

A365003 Heinz numbers of integer partitions where the sum of all parts is twice the sum of distinct parts.

Original entry on oeis.org

1, 4, 9, 25, 36, 48, 49, 100, 121, 160, 169, 196, 225, 289, 361, 441, 448, 484, 529, 567, 676, 750, 810, 841, 900, 961, 1080, 1089, 1156, 1200, 1225, 1369, 1408, 1440, 1444, 1521, 1681, 1764, 1849, 1920, 2116, 2209, 2268, 2352, 2601, 2809, 3024, 3025, 3159
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The prime indices of 750 are {1,2,3,3,3}, with sum 12, while the distinct prime indices {1,2,3} have sum 6, so 750 is in the sequence.
The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     9: {2,2}
    25: {3,3}
    36: {1,1,2,2}
    48: {1,1,1,1,2}
    49: {4,4}
   100: {1,1,3,3}
   121: {5,5}
   160: {1,1,1,1,1,3}
   169: {6,6}
   196: {1,1,4,4}
   225: {2,2,3,3}
   289: {7,7}
   361: {8,8}
   441: {2,2,4,4}
   448: {1,1,1,1,1,1,4}
		

Crossrefs

The LHS is A056239 (sum of prime indices).
The RHS is twice A066328.
Partitions of this type are counted by A364910.
A000041 counts integer partitions, strict A000009.
A001222 counts prime indices, distinct A001221.
A112798 lists prime indices, distinct A304038.
A116861 counts partitions by sum and sum of distinct parts.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Total[prix[#]]==2*Total[Union[prix[#]]]&]

Formula

A056239(a(n)) = 2*A066328(a(n)).

A365072 Number of integer partitions of n such that no distinct part can be written as a (strictly) positive linear combination of the other distinct parts.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 6, 8, 9, 17, 15, 31, 34, 53, 65, 109, 117, 196, 224, 328, 405, 586, 673, 968, 1163, 1555, 1889, 2531, 2986, 3969, 4744, 6073, 7333, 9317, 11053, 14011, 16710, 20702, 24714, 30549, 36127, 44413, 52561, 63786, 75583, 91377, 107436, 129463
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2023

Keywords

Comments

We consider (for example) that 2x + y + 3z is a positive linear combination of (x,y,z), but 2x + y is not, as the coefficient of z is 0.

Examples

			The a(1) = 1 through a(8) = 6 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (1111)  (11111)  (222)     (52)       (53)
                                     (111111)  (322)      (332)
                                               (1111111)  (2222)
                                                          (11111111)
The a(11) = 17 partitions:
  (11)  (9,2)  (7,2,2)  (5,3,2,1)  (4,3,2,1,1)  (1,1,1,1,1,1,1,1,1,1,1)
        (8,3)  (6,3,2)  (5,2,2,2)  (3,2,2,2,2)
        (7,4)  (5,4,2)  (4,3,2,2)
        (6,5)  (5,3,3)  (3,3,3,2)
               (4,4,3)
		

Crossrefs

The nonnegative version is A364915, strict A364350.
The strict case is A365006.
For subsets instead of partitions we have A365044, complement A365043.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A237667 counts sum-free partitions, binary A236912.
A364912 counts positive linear combinations of partitions.
A365068 counts combination-full partitions, strict A364839.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]}, Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Union/@IntegerPartitions[n], Function[ptn,!Or@@Table[combp[ptn[[k]],Delete[ptn,k]]!={}, {k,Length[ptn]}]]@*Union]],{n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365072(n):
        if n <= 1: return 1
        alist = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)]
        c = 1
        for p in partitions(n,k=n-1):
            s = set(p)
            for q in s:
                if tuple(sorted(s-{q})) in alist[q]:
                    break
            else:
                c += 1
        return c # Chai Wah Wu, Sep 20 2023

Extensions

a(31)-a(49) from Chai Wah Wu, Sep 20 2023

A374703 Number of integer compositions of 2n whose leaders of weakly decreasing runs sum to n. Center n = 2*k of the triangle A374748.

Original entry on oeis.org

1, 1, 2, 9, 24, 96, 343, 1242, 4700, 17352, 65995
Offset: 0

Views

Author

Gus Wiseman, Aug 12 2024

Keywords

Comments

The weakly decreasing run-leaders of a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.

Examples

			The a(0) = 1 through a(4) = 24 compositions:
  ()  (11)  (22)   (33)     (44)
            (211)  (321)    (422)
                   (1122)   (431)
                   (1221)   (1133)
                   (3111)   (1322)
                   (11112)  (1331)
                   (11121)  (4211)
                   (11211)  (11132)
                   (12111)  (11321)
                            (13211)
                            (21122)
                            (21221)
                            (22112)
                            (22121)
                            (41111)
                            (111113)
                            (111131)
                            (111311)
                            (113111)
                            (131111)
                            (211112)
                            (211121)
                            (211211)
                            (212111)
		

Crossrefs

For reversed partitions we have A364910.
For strictly decreasing runs we have the center of A374700.
Center n = 2*k of the triangle A374748.
A003242 counts anti-run compositions.
A011782 counts integer compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[2n],Total[First/@Split[#,GreaterEqual]]==n&]],{n,0,8}]

A365005 Number of ways to write 2 as a nonnegative linear combination of a strict integer partition of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 4, 4, 5, 6, 9, 10, 13, 15, 19, 23, 28, 33, 40, 47, 56, 67, 78, 92, 108, 126, 146, 171, 198, 229, 264, 305, 350, 403, 460, 527, 603, 687, 781, 889, 1009, 1144, 1295, 1464, 1653, 1866, 2101, 2364, 2659, 2984, 3347, 3752, 4200, 4696, 5248, 5858
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2023

Keywords

Comments

A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).

Examples

			The a(6) = 4 ways:
  0*5 + 2*1
  0*4 + 1*2
  0*3 + 0*2 + 2*1
  0*3 + 1*2 + 0*1
		

Crossrefs

For 1 instead of 2 we have A096765.
Column k = n - 2 of A116861.
Row n = 2 of A364916.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Join@@Table[combs[2,ptn], {ptn,Select[IntegerPartitions[n], UnsameQ@@#&]}]],{n,0,30}]
Previous Showing 11-17 of 17 results.