A366455
G.f. A(x) satisfies A(x) = 1 + x + x/A(x)^(5/2).
Original entry on oeis.org
1, 2, -5, 30, -215, 1710, -14516, 128830, -1180920, 11093830, -106245975, 1033454774, -10181848705, 101394979530, -1018972470275, 10320779179380, -105250097458410, 1079767027094630, -11136159773691830, 115395278542757580, -1200814926210284360
Offset: 0
Cf.
A112478,
A364393,
A364407,
A364408,
A364409,
A366266,
A366267,
A366268,
A366452,
A366453,
A366454,
A366456.
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(7*k/2-1, k)*binomial(n+5*k/2-2, n-k)/(7*k/2-1));
A366456
G.f. A(x) satisfies A(x) = 1 + x + x/A(x)^(7/2).
Original entry on oeis.org
1, 2, -7, 56, -532, 5600, -62860, 737324, -8929726, 110811344, -1401640814, 18004922936, -234243536436, 3080152906096, -40870739065996, 546563064528906, -7358930622768977, 99672580921800656, -1357142384455626909, 18565841939010374736, -255054402946387767408
Offset: 0
Cf.
A112478,
A364393,
A364407,
A364408,
A364409,
A366266,
A366267,
A366268,
A366452,
A366453,
A366454,
A366455.
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(9*k/2-1, k)*binomial(n+7*k/2-2, n-k)/(9*k/2-1));
A366556
G.f. A(x) satisfies A(x) = 1 + x + x^4*A(x)^3.
Original entry on oeis.org
1, 1, 0, 0, 1, 3, 3, 1, 3, 15, 30, 30, 27, 87, 252, 420, 475, 747, 2064, 4632, 7203, 9933, 19635, 47025, 92013, 144745, 237510, 498498, 1073817, 1969131, 3267411, 5977881, 12462579, 25035747, 45090936, 79414344, 153115299, 311198457, 600883569, 1090988379, 2012793705
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(2*k+1, n-4*k)*binomial(3*k, k)/(2*k+1));
A348957
G.f. A(x) satisfies A(x) = (1 + x * A(-x)) / (1 - x * A(x)).
Original entry on oeis.org
1, 2, 2, 10, 18, 98, 210, 1194, 2786, 16258, 39906, 236938, 601458, 3615330, 9399858, 57024426, 150947010, 922283522, 2475603138, 15212318730, 41290579410, 254909413218, 698230131858, 4327273358250, 11943274468770, 74260741616514, 206279837823650, 1286199407132554
Offset: 0
-
nmax = 27; A[] = 0; Do[A[x] = (1 + x A[-x])/(1 - x A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = -(-1)^n a[n - 1] + Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 27}]
CoefficientList[y/.AsymptoticSolve[y-y^2+x(1+y^3)==0,y->1,{x,0,27}][[1]],x] (* Alexander Burstein, Nov 26 2021 *)
A378318
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(3*r+k,n)/(3*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 16, 30, 0, 1, 8, 30, 84, 170, 0, 1, 10, 48, 170, 496, 1050, 0, 1, 12, 70, 296, 1050, 3140, 6846, 0, 1, 14, 96, 470, 1920, 6846, 20832, 46374, 0, 1, 16, 126, 700, 3210, 12936, 46374, 142932, 323154, 0, 1, 18, 160, 994, 5040, 22402, 89712, 323154, 1005856, 2301618, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 6, 16, 30, 48, 70, 96, ...
0, 30, 84, 170, 296, 470, 700, ...
0, 170, 496, 1050, 1920, 3210, 5040, ...
0, 1050, 3140, 6846, 12936, 22402, 36492, ...
0, 6846, 20832, 46374, 89712, 159390, 266800, ...
-
T(n, k, t=0, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A367040
G.f. satisfies A(x) = 1 + x^2 + x*A(x)^3.
Original entry on oeis.org
1, 1, 4, 15, 70, 360, 1953, 11008, 63837, 378390, 2282205, 13960890, 86411232, 540166219, 3405341160, 21625820793, 138216775785, 888371346825, 5738510504979, 37234351046835, 242567430368298, 1585979835198675, 10403866383915844, 68453912880893025
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(2*(n-2*k)+1, k)*binomial(3*(n-2*k), n-2*k)/(2*(n-2*k)+1));
A366696
G.f. satisfies A(x) = (1 + x)^2 + x*A(x)^3.
Original entry on oeis.org
1, 3, 10, 57, 378, 2730, 20853, 165592, 1353297, 11307168, 96148149, 829336122, 7238765532, 63816716547, 567425771478, 5082596905629, 45820260590481, 415423374916503, 3785371205061825, 34647928319586375, 318419608552433190, 2937021429784279707
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*(2*k+1), n-k)*binomial(3*k, k)/(2*k+1));
A366697
G.f. satisfies A(x) = (1 + x)^3 + x*A(x)^3.
Original entry on oeis.org
1, 4, 15, 94, 706, 5769, 49923, 449376, 4164228, 39459852, 380594767, 3724049805, 36876008673, 368835076813, 3720863181033, 37815675159285, 386818379566749, 3979362306753315, 41144521893563511, 427335033811660713, 4456402044181677264
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*(2*k+1), n-k)*binomial(3*k, k)/(2*k+1));