cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 50 results. Next

A371165 Positive integers with as many divisors (A000005) as distinct divisors of prime indices (A370820).

Original entry on oeis.org

3, 5, 11, 17, 26, 31, 35, 38, 39, 41, 49, 57, 58, 59, 65, 67, 69, 77, 83, 86, 87, 94, 109, 119, 127, 129, 133, 146, 148, 157, 158, 179, 191, 202, 206, 211, 217, 235, 237, 241, 244, 253, 274, 277, 278, 283, 284, 287, 291, 298, 303, 319, 326, 331, 333, 334, 353
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     3: {2}        67: {19}        158: {1,22}
     5: {3}        69: {2,9}       179: {41}
    11: {5}        77: {4,5}       191: {43}
    17: {7}        83: {23}        202: {1,26}
    26: {1,6}      86: {1,14}      206: {1,27}
    31: {11}       87: {2,10}      211: {47}
    35: {3,4}      94: {1,15}      217: {4,11}
    38: {1,8}     109: {29}        235: {3,15}
    39: {2,6}     119: {4,7}       237: {2,22}
    41: {13}      127: {31}        241: {53}
    49: {4,4}     129: {2,14}      244: {1,1,18}
    57: {2,8}     133: {4,8}       253: {5,9}
    58: {1,10}    146: {1,21}      274: {1,33}
    59: {17}      148: {1,1,12}    277: {59}
    65: {3,6}     157: {37}        278: {1,34}
		

Crossrefs

For prime factors instead of divisors on both sides we get A319899.
For prime factors on LHS we get A370802, for distinct prime factors A371177.
The RHS is A370820, for prime factors instead of divisors A303975.
For (greater than) instead of (equal) we get A371166.
For (less than) instead of (equal) we get A371167.
Partitions of this type are counted by A371172.
Other inequalities: A370348 (A371171), A371168 (A371173), A371169, A371170.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, A112798 indices, length A001222.
A239312 counts divisor-choosable partitions, ranks A368110.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A370320 counts non-divisor-choosable partitions, ranks A355740.
A370814 counts divisor-choosable factorizations, complement A370813.

Programs

  • Mathematica
    Select[Range[100],Length[Divisors[#]] == Length[Union@@Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]

Formula

A000005(a(n)) = A370820(a(n)).

A371168 Positive integers with fewer prime factors (A001222) than distinct divisors of prime indices (A370820).

Original entry on oeis.org

3, 5, 7, 11, 13, 14, 15, 17, 19, 21, 23, 26, 29, 31, 33, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 65, 67, 69, 70, 71, 73, 74, 76, 77, 78, 79, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 105, 106, 107, 109, 111, 113, 114, 115
Offset: 1

Views

Author

Gus Wiseman, Mar 16 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 105 are {2,3,4}, and there are 3 prime factors (3,5,7) and 4 distinct divisors of prime indices (1,2,3,4), so 105 is in the sequence.
The terms together with their prime indices begin:
     3: {2}      35: {3,4}      59: {17}        86: {1,14}
     5: {3}      37: {12}       61: {18}        87: {2,10}
     7: {4}      38: {1,8}      65: {3,6}       89: {24}
    11: {5}      39: {2,6}      67: {19}        91: {4,6}
    13: {6}      41: {13}       69: {2,9}       93: {2,11}
    14: {1,4}    43: {14}       70: {1,3,4}     94: {1,15}
    15: {2,3}    46: {1,9}      71: {20}        95: {3,8}
    17: {7}      47: {15}       73: {21}        97: {25}
    19: {8}      49: {4,4}      74: {1,12}     101: {26}
    21: {2,4}    51: {2,7}      76: {1,1,8}    103: {27}
    23: {9}      52: {1,1,6}    77: {4,5}      105: {2,3,4}
    26: {1,6}    53: {16}       78: {1,2,6}    106: {1,16}
    29: {10}     55: {3,5}      79: {22}       107: {28}
    31: {11}     57: {2,8}      83: {23}       109: {29}
    33: {2,5}    58: {1,10}     85: {3,7}      111: {2,12}
		

Crossrefs

The opposite version is A370348 counted by A371171.
The version for equality is A370802, counted by A371130, strict A371128.
The RHS is A370820, for prime factors instead of divisors A303975.
For divisors instead of prime factors on the LHS we get A371166.
The complement is counted by A371169.
The weak version is A371170.
Partitions of this type are counted by A371173.
Choosable partitions: A239312 (A368110), A355740 (A370320), A370592 (A368100), A370593 (A355529).
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, indices A112798, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]
    				

Formula

A001222(a(n)) < A370820(a(n)).

A371173 Number of integer partitions of n with fewer parts than distinct divisors of parts.

Original entry on oeis.org

0, 0, 1, 1, 1, 3, 2, 4, 6, 7, 11, 11, 17, 20, 26, 34, 44, 56, 67, 84, 102, 131, 156, 195, 232, 283, 346, 411, 506, 598, 721, 855, 1025, 1204, 1448, 1689, 2018, 2363, 2796, 3265, 3840, 4489, 5242, 6104, 7106, 8280, 9595, 11143, 12862, 14926, 17197, 19862, 22841
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2024

Keywords

Comments

The Heinz numbers of these partitions are given by A371168.

Examples

			The partition (4,3,2) has 3 parts {2,3,4} and 4 distinct divisors of parts {1,2,3,4}, so is counted under a(9).
The a(2) = 1 through a(10) = 11 partitions:
  (2)  (3)  (4)  (5)    (6)    (7)    (8)      (9)      (10)
                 (3,2)  (4,2)  (4,3)  (4,4)    (5,4)    (6,4)
                 (4,1)         (5,2)  (5,3)    (6,3)    (7,3)
                               (6,1)  (6,2)    (7,2)    (8,2)
                                      (4,3,1)  (8,1)    (9,1)
                                      (6,1,1)  (4,3,2)  (4,3,3)
                                               (6,2,1)  (5,3,2)
                                                        (5,4,1)
                                                        (6,2,2)
                                                        (6,3,1)
                                                        (8,1,1)
		

Crossrefs

The RHS is represented by A370820.
The version for equality is A371130 (ranks A370802), strict A371128.
For submultisets instead of parts on the LHS we get ranks A371166.
These partitions are ranked by A371168.
The opposite version is A371171, ranks A370348.
A000005 counts divisors.
A355731 counts choices of a divisor of each prime index, firsts A355732.
Choosable partitions: A239312 (A368110), A355740 (A370320), A370592 (A368100), A370593 (A355529).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#] < Length[Union@@Divisors/@#]&]],{n,0,30}]

A370810 Numbers n such that only one set can be obtained by choosing a different divisor of each prime index of n.

Original entry on oeis.org

1, 2, 6, 9, 10, 22, 25, 30, 34, 42, 45, 62, 63, 66, 75, 82, 98, 99, 102, 110, 118, 121, 134, 147, 153, 166, 170, 186, 210, 218, 230, 246, 254, 275, 279, 289, 310, 314, 315, 330, 343, 354, 358, 363, 369, 374, 382, 390, 402, 410, 422, 425, 462, 482, 490, 495
Offset: 1

Views

Author

Gus Wiseman, Mar 05 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 6591 are {2,6,6,6}, for which the only choice is {1,2,3,6}, so 6591 is in the sequence.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    6: {1,2}
    9: {2,2}
   10: {1,3}
   22: {1,5}
   25: {3,3}
   30: {1,2,3}
   34: {1,7}
   42: {1,2,4}
   45: {2,2,3}
   62: {1,11}
   63: {2,2,4}
   66: {1,2,5}
   75: {2,3,3}
   82: {1,13}
   98: {1,4,4}
   99: {2,2,5}
  102: {1,2,7}
  110: {1,3,5}
		

Crossrefs

For no choices we have A355740, counted by A370320.
For at least one choice we have A368110, counted by A239312.
Partitions of this type are counted by A370595 and A370815.
For just prime factors we have A370647, counted by A370594.
For more than one choice we have A370811, counted by A370803.
A000005 counts divisors.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741, A355744, A355745 choose prime factors of prime indices.
A370814 counts factorizations with choosable divisors, complement A370813.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Union[Sort /@ Select[Tuples[Divisors/@prix[#]],UnsameQ@@#&]]]==1&]

A370640 Number of maximal subsets of {1..n} such that it is possible to choose a different binary index of each element.

Original entry on oeis.org

1, 1, 1, 3, 3, 8, 17, 32, 32, 77, 144, 242, 383, 580, 843, 1201, 1201, 2694, 4614, 7096, 10219, 14186, 19070, 25207, 32791, 42160, 53329, 66993, 82811, 101963, 124381, 151286, 151286, 324695, 526866, 764438, 1038089, 1358129, 1725921, 2154668, 2640365, 3202985
Offset: 0

Views

Author

Gus Wiseman, Mar 10 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
Also choices of A070939(n) elements of {1..n} such that it is possible to choose a different binary index of each.

Examples

			The a(0) = 1 through a(6) = 17 subsets:
  {}  {1}  {1,2}  {1,2}  {1,2,4}  {1,2,4}  {1,2,4}
                  {1,3}  {1,3,4}  {1,2,5}  {1,2,5}
                  {2,3}  {2,3,4}  {1,3,4}  {1,2,6}
                                  {1,3,5}  {1,3,4}
                                  {2,3,4}  {1,3,5}
                                  {2,3,5}  {1,3,6}
                                  {2,4,5}  {1,4,6}
                                  {3,4,5}  {1,5,6}
                                           {2,3,4}
                                           {2,3,5}
                                           {2,3,6}
                                           {2,4,5}
                                           {2,5,6}
                                           {3,4,5}
                                           {3,4,6}
                                           {3,5,6}
                                           {4,5,6}
The a(0) = 1 through a(6) = 17 set-systems:
    {1}  {1}{2}  {1}{2}   {1}{2}{3}   {1}{2}{3}    {1}{2}{3}
                 {1}{12}  {1}{12}{3}  {1}{12}{3}   {1}{12}{3}
                 {2}{12}  {2}{12}{3}  {1}{2}{13}   {1}{2}{13}
                                      {2}{12}{3}   {1}{2}{23}
                                      {2}{3}{13}   {1}{3}{23}
                                      {1}{12}{13}  {2}{12}{3}
                                      {12}{3}{13}  {2}{3}{13}
                                      {2}{12}{13}  {1}{12}{13}
                                                   {1}{12}{23}
                                                   {1}{13}{23}
                                                   {12}{3}{13}
                                                   {12}{3}{23}
                                                   {2}{12}{13}
                                                   {2}{12}{23}
                                                   {2}{13}{23}
                                                   {3}{13}{23}
                                                   {12}{13}{23}
		

Crossrefs

Dominated by A357812.
The version for set-systems is A368601, max of A367902 (complement A367903).
For prime indices we have A370585, with n A370590, see also A370591.
This is the maximal case of A370636 (complement A370637).
The case of a unique choice is A370638.
The case containing n is A370641, non-maximal A370639.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n],{IntegerLength[n,2]}], Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]
  • PARI
    lista(nn) = my(b, m=Map(Mat([[[]], 1])), t, u, v, w, z); for(n=0, nn, t=Mat(m)~; b=Vecrev(binary(n)); u=select(i->b[i], [1..#b]); for(i=1, #t, v=t[1, i]; w=List([]); for(j=1, #v, for(k=1, #u, if(!setsearch(v[j], u[k]), listput(w, setunion(v[j], [u[k]]))))); w=Set(w); if(#w, z=0; mapisdefined(m, w, &z); mapput(m, w, z+t[2, i]))); print1(mapget(m, [[1..#b]]), ", ")); \\ Jinyuan Wang, Mar 28 2025

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A371172 Number of integer partitions of n with as many submultisets as distinct divisors of parts.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 0, 3, 2, 3, 1, 4, 2, 1, 2, 3, 4, 2, 4, 1, 5, 2, 7, 5, 9, 4, 9, 15, 18, 16, 24, 13, 17, 23, 23, 22, 34, 17, 30, 31, 36, 29, 43, 21, 30, 35, 44, 28, 47, 19, 44
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2024

Keywords

Comments

The Heinz numbers of these partitions are given by A371165.

Examples

			The partition (8,6,6) has 6 submultisets {(8,6,6),(8,6),(6,6),(8),(6),()} and 6 distinct divisors of parts {1,2,3,4,6,8}, so is counted under a(20).
The a(17) = 2 through a(24) = 9 partitions:
  (17)    (9,9)     (19)  (11,9)    (14,7)  (13,9)    (23)       (21,3)
  (13,4)  (15,3)          (15,5)    (17,4)  (21,1)    (19,4)     (22,2)
          (6,6,6)         (8,6,6)           (8,8,6)   (22,1)     (8,8,8)
          (12,3,3)        (12,4,4)          (10,6,6)  (15,4,4)   (10,8,6)
                          (18,1,1)          (16,3,3)  (12,10,1)  (12,6,6)
                                            (18,2,2)             (12,7,5)
                                            (20,1,1)             (18,3,3)
                                                                 (20,2,2)
                                                                 (12,10,2)
		

Crossrefs

The RHS is represented by A370820.
Counting parts on the LHS gives A371130 (ranks A370802), strict A371128.
These partitions are ranked by A371165.
A000005 counts divisors.
A355731 counts choices of a divisor of each prime index, firsts A355732.
Choosable partitions: A239312 (A368110), A355740 (A370320), A370592 (A368100), A370593 (A355529).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Divisors[Times@@Prime/@#]] == Length[Union@@Divisors/@#]&]],{n,0,30}]

A370645 Number of integer factorizations of n into unordered factors > 1 such that only one set can be obtained by choosing a different prime factor of each factor.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 01 2024

Keywords

Comments

All of these factorizations are co-balanced (A340596).

Examples

			The factorization f = (3*6*10) has prime factor choices (3,2,2), (3,3,2), (3,2,5), and (3,3,5), of which only (3,2,5) has all different parts, so f is counted under a(180).
The a(n) factorizations for n = 2, 12, 24, 36, 72, 120, 144, 180, 288:
  (2)  (2*6)  (3*8)   (4*9)   (8*9)   (3*5*8)   (2*72)   (4*5*9)   (3*96)
       (3*4)  (4*6)   (6*6)   (2*36)  (4*5*6)   (3*48)   (5*6*6)   (4*72)
              (2*12)  (2*18)  (3*24)  (2*3*20)  (4*36)   (2*3*30)  (6*48)
                      (3*12)  (4*18)  (2*5*12)  (6*24)   (2*5*18)  (8*36)
                              (6*12)  (2*6*10)  (8*18)   (2*6*15)  (9*32)
                                      (3*4*10)  (9*16)   (2*9*10)  (12*24)
                                                (12*12)  (3*4*15)  (16*18)
                                                         (3*5*12)  (2*144)
                                                         (3*6*10)
		

Crossrefs

Multisets of this type are ranked by A368101, see also A368100, A355529.
For nonexistence we have A368413, complement A368414.
Subsets of this type are counted by A370584, see also A370582, A370583.
Maximal sets of this type are counted by A370585.
The version for partitions is A370594, see also A370592, A370593.
Subsets of this type are counted by A370638, see also A370636, A370637.
For unlabeled multiset partitions we have A370646, also A368098, A368097.
A001055 counts factorizations, strict A045778.
A006530 gives greatest prime factor, least A020639.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A027746 lists prime factors, A112798 indices, length A001222.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.
A355741 counts ways to choose a prime factor of each prime index.
For set-systems see A367902-A367908.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join @@ Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]], {d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n], Length[Union[Sort/@Select[Tuples[First /@ FactorInteger[#]&/@#], UnsameQ@@#&]]]==1&]],{n,100}]

A370647 Numbers such that only one set can be obtained by choosing a different prime factor of each prime index.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 19, 23, 31, 33, 35, 39, 41, 51, 53, 55, 59, 65, 67, 69, 77, 83, 85, 87, 91, 93, 95, 97, 103, 109, 111, 119, 123, 127, 129, 131, 155, 157, 161, 165, 169, 177, 179, 183, 185, 187, 191, 201, 203, 205, 209, 211, 213, 217, 227, 235, 237, 241
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 91 are {4,6}, with only choice {2,3}, so 91 is in the sequence.
The terms together with their prime indices begin:
     1: {}        53: {16}      109: {29}
     3: {2}       55: {3,5}     111: {2,12}
     5: {3}       59: {17}      119: {4,7}
     7: {4}       65: {3,6}     123: {2,13}
    11: {5}       67: {19}      127: {31}
    15: {2,3}     69: {2,9}     129: {2,14}
    17: {7}       77: {4,5}     131: {32}
    19: {8}       83: {23}      155: {3,11}
    23: {9}       85: {3,7}     157: {37}
    31: {11}      87: {2,10}    161: {4,9}
    33: {2,5}     91: {4,6}     165: {2,3,5}
    35: {3,4}     93: {2,11}    169: {6,6}
    39: {2,6}     95: {3,8}     177: {2,17}
    41: {13}      97: {25}      179: {41}
    51: {2,7}    103: {27}      183: {2,18}
		

Crossrefs

For nonexistence we have A355529, count A370593.
For binary instead of prime indices we have A367908, counted by A367904.
For existence we have A368100, count A370592.
For a sequence instead of set of factors we have A368101.
The version for subsets is A370584, see also A370582, A370583.
Maximal sets of this type are counted by A370585.
Partitions of this type are counted by A370594.
For subsets and binary indices we have A370638.
The version for factorizations is A370645, see also A368414, A368413.
For divisors instead of factors we have A370810, counted by A370595.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 counts ways to choose a prime factor of each prime index.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Union[Sort /@ Select[Tuples[prix/@prix[#]],UnsameQ@@#&]]]==1&]

A370804 Number of non-condensed integer partitions of n into parts > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 3, 3, 6, 6, 12, 14, 21, 25, 37, 43, 62, 75, 101, 124, 167, 198, 261, 316, 401, 488, 618, 745, 930, 1119, 1379, 1664, 2032, 2433, 2960, 3537, 4259, 5076, 6094, 7227, 8629, 10205, 12126, 14302, 16932, 19893, 23471, 27502, 32315, 37775
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2024

Keywords

Comments

These are partitions without ones such that it is not possible to choose a different divisor of each part.

Examples

			The a(6) = 1 through a(14) = 12 partitions:
  (222)  .  (2222)  (333)   (3322)   (3332)   (3333)    (4333)    (4442)
                    (3222)  (4222)   (5222)   (4422)    (7222)    (5333)
                            (22222)  (32222)  (6222)    (33322)   (5522)
                                              (33222)   (43222)   (8222)
                                              (42222)   (52222)   (33332)
                                              (222222)  (322222)  (43322)
                                                                  (44222)
                                                                  (53222)
                                                                  (62222)
                                                                  (332222)
                                                                  (422222)
                                                                  (2222222)
		

Crossrefs

These partitions have as ranks the odd terms of A355740.
The version with ones is A370320, complement A239312.
The complement without ones is A370805.
The version for prime factors is A370807, with ones A370593.
The version for factorizations is A370813, complement A370814.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741, A355744, A355745 choose prime factors of prime indices.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1] && Length[Select[Tuples[Divisors/@#],UnsameQ@@#&]]==0&]],{n,0,30}]

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A371170 Positive integers with at most as many prime factors (A001222) as distinct divisors of prime indices (A370820).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 92
Offset: 1

Views

Author

Gus Wiseman, Mar 16 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 105 are {2,3,4}, and there are 3 prime factors (3,5,7) and 4 distinct divisors of prime indices (1,2,3,4), so 105 is in the sequence.
The terms together with their prime indices begin:
     1: {}       22: {1,5}      42: {1,2,4}    63: {2,2,4}
     2: {1}      23: {9}        43: {14}       65: {3,6}
     3: {2}      25: {3,3}      45: {2,2,3}    66: {1,2,5}
     5: {3}      26: {1,6}      46: {1,9}      67: {19}
     6: {1,2}    28: {1,1,4}    47: {15}       69: {2,9}
     7: {4}      29: {10}       49: {4,4}      70: {1,3,4}
     9: {2,2}    30: {1,2,3}    51: {2,7}      71: {20}
    10: {1,3}    31: {11}       52: {1,1,6}    73: {21}
    11: {5}      33: {2,5}      53: {16}       74: {1,12}
    13: {6}      34: {1,7}      55: {3,5}      75: {2,3,3}
    14: {1,4}    35: {3,4}      57: {2,8}      76: {1,1,8}
    15: {2,3}    37: {12}       58: {1,10}     77: {4,5}
    17: {7}      38: {1,8}      59: {17}       78: {1,2,6}
    19: {8}      39: {2,6}      61: {18}       79: {22}
    21: {2,4}    41: {13}       62: {1,11}     82: {1,13}
		

Crossrefs

The complement is A370348, counted by A371171.
The case of equality is A370802, counted by A371130, strict A371128.
The RHS is A370820, for prime factors instead of divisors A303975.
The strict version is A371168 counted by A371173.
The opposite version is A371169.
Choosable partitions: A239312 (A368110), A355740 (A370320), A370592 (A368100), A370593 (A355529).
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, indices A112798, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]<=Length[Union @@ Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&]
Previous Showing 21-30 of 50 results. Next