A369146
Number of unlabeled loop-graphs with up to n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).
Original entry on oeis.org
0, 0, 1, 8, 60, 471, 4911, 78797, 2207405, 113740613, 10926218807, 1956363413115, 652335084532025, 405402273420833338, 470568642161119515627, 1023063423471189429817807, 4178849203082023236054797465, 32168008290073542372004072630072, 468053896898117580623237189882068990
Offset: 0
The a(0) = 0 through a(3) = 8 loop-graphs (loops shown as singletons):
. . {{1},{2},{1,2}} {{1},{2},{1,2}}
{{1},{2},{3},{1,2}}
{{1},{2},{1,2},{1,3}}
{{1},{2},{1,3},{2,3}}
{{1},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3}}
{{1},{2},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
Without the choice condition we have
A000666, labeled
A006125 (shifted).
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Select[Tuples[#],UnsameQ@@#&]=={}&]]],{n,0,4}]
A368730
Number of n-element sets of singletons or pairs of distinct elements of {1..n} with union {1..n}, or loop-graphs covering n vertices with n edges, such that it is not possible to choose a different element from each.
Original entry on oeis.org
0, 0, 0, 0, 6, 180, 4560, 117600, 3234588, 96119982, 3092585310, 107542211535, 4029055302855, 162040513972623, 6970457656110039, 319598974394563500, 15568332397812799920, 803271954062642638830, 43778508937914677872788, 2513783434620146896920843
Offset: 0
The a(4) = 6 set-systems:
{{1},{2},{1,2},{3,4}}
{{1},{3},{1,3},{2,4}}
{{1},{4},{1,4},{2,3}}
{{2},{3},{1,4},{2,3}}
{{2},{4},{1,3},{2,4}}
{{3},{4},{1,2},{3,4}}
The case of a unique choice appears to be
A000272.
The version without the choice condition is
A368597, non-covering
A014068.
The complement appears to be
A333331.
Allowing any number of edges of any size gives
A367903, ranks
A367907.
Allowing any number of non-singletons gives
A367868, non-covering
A367867.
A000085 counts set partitions into singletons or pairs.
A100861 counts set partitions into singletons or pairs by number of pairs.
A111924 counts set partitions into singletons or pairs by length.
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,2}], {n}],Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]
A368924
Triangle read by rows where T(n,k) is the number of labeled loop-graphs on n vertices with k loops and n-k non-loops such that it is possible to choose a different vertex from each edge.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 1, 9, 6, 1, 15, 68, 48, 12, 1, 222, 720, 510, 150, 20, 1, 3670, 9738, 6825, 2180, 360, 30, 1, 68820, 159628, 110334, 36960, 6895, 735, 42, 1, 1456875, 3067320, 2090760, 721560, 145530, 17976, 1344, 56, 1, 34506640, 67512798, 45422928, 15989232, 3402756, 463680, 40908, 2268, 72, 1
Offset: 0
Triangle begins:
1
0 1
0 2 1
1 9 6 1
15 68 48 12 1
222 720 510 150 20 1
3670 9738 6825 2180 360 30 1
68820 159628 110334 36960 6895 735 42 1
Row n = 3 counts the following loop-graphs:
{{1,2},{1,3},{2,3}} {{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{3},{1,2}}
{{2},{1,2},{1,3}} {{1},{3},{2,3}}
{{2},{1,2},{2,3}} {{2},{3},{1,2}}
{{2},{1,3},{2,3}} {{2},{3},{1,3}}
{{3},{1,2},{1,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
Cf.
A000169,
A057500,
A062740,
A129271,
A133686,
A322661,
A367869,
A367902,
A368601,
A368835,
A368836,
A368927.
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]],{n,0,5},{k,0,n}]
-
T(n)={my(t=-lambertw(-x + O(x*x^n))); [Vecrev(p) | p <- Vec(serlaplace(exp(-log(1-t)/2 - t/2 + t*y - t^2/4)))]}
{ my(A=T(8)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 14 2024
A369145
Number of unlabeled loop-graphs with up to n vertices such that it is possible to choose a different vertex from each edge (choosable).
Original entry on oeis.org
1, 2, 5, 12, 30, 73, 185, 467, 1207, 3147, 8329, 22245, 60071, 163462, 448277, 1236913, 3432327, 9569352, 26792706, 75288346, 212249873, 600069431, 1700826842, 4831722294, 13754016792, 39224295915, 112048279650, 320563736148, 918388655873, 2634460759783, 7566000947867
Offset: 0
The a(0) = 1 through a(3) = 12 loop-graphs (loops shown as singletons):
{} {} {} {}
{{1}} {{1}} {{1}}
{{1,2}} {{1,2}}
{{1},{2}} {{1},{2}}
{{1},{1,2}} {{1},{1,2}}
{{1},{2,3}}
{{1,2},{1,3}}
{{1},{2},{3}}
{{1},{2},{1,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1,2},{1,3},{2,3}}
Without the choice condition we get
A000666, labeled
A006125 (shifted left).
The complement for exactly n edges and no loops is
A369201, labeled
A369143.
A054548 counts graphs covering n vertices with k edges, with loops
A369199.
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]]],{n,0,4}]
A369143
Number of labeled simple graphs with n edges and n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).
Original entry on oeis.org
0, 0, 0, 0, 0, 30, 1335, 47460, 1651230, 59636640, 2284113762, 93498908580, 4099070635935, 192365988161490, 9646654985111430, 515736895712230192, 29321225548502776980, 1768139644819077541440, 112805126206185257070660, 7595507651522103787077270, 538504704005397535690160274
Offset: 0
The term a(5) = 30 counts all permutations of the graph {{1,2},{1,3},{1,4},{2,3},{2,4}}.
The version without the choice condition is
A116508, covering
A367863.
-
Table[Length[Select[Subsets[Subsets[Range[n],{2}], {n}],Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]
A369144
Number of labeled simple graphs with n edges covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 90, 4935, 200970, 7636860, 291089610, 11459170800, 471932476290, 20447369179380, 933942958593645, 44981469288560805, 2282792616992648670, 121924195590795244920, 6843305987751060036720, 403003907531795513467260, 24861219342100679072572470
Offset: 0
The term a(6) = 90 counts all permutations of the (non-connected) graph {{1,2},{1,3},{1,4},{2,3},{2,4},{5,6}}.
The covering complement is counted by
A137916.
Without the choice condition we have
A367863, covering case of
A116508.
This is the covering case of
A369143.
-
Table[Length[Select[Subsets[Subsets[Range[n],{2}], {n}],Union@@#==Range[n]&&Length[Select[Tuples[#], UnsameQ@@#&]]==0&]],{n,0,6}]
A368836
Triangle read by rows where T(n,k) is the number of unlabeled loop-graphs on up to n vertices with k loops and n-k non-loops.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 2, 6, 6, 2, 1, 6, 17, 18, 8, 2, 1, 21, 52, 58, 30, 9, 2, 1, 65, 173, 191, 107, 37, 9, 2, 1, 221, 585, 666, 393, 148, 39, 9, 2, 1, 771, 2064, 2383, 1493, 589, 168, 40, 9, 2, 1, 2769, 7520, 8847, 5765, 2418, 718, 176, 40, 9, 2, 1
Offset: 0
Triangle begins:
1
0 1
0 1 1
1 2 2 1
2 6 6 2 1
6 17 18 8 2 1
21 52 58 30 9 2 1
Representatives of the loop-graphs counted by row n = 4:
{12}{13}{14}{23} {1}{12}{13}{14} {1}{2}{12}{13} {1}{2}{3}{12} {1}{2}{3}{4}
{12}{13}{24}{34} {1}{12}{13}{23} {1}{2}{12}{34} {1}{2}{3}{14}
{1}{12}{13}{24} {1}{2}{13}{14}
{1}{12}{23}{24} {1}{2}{13}{23}
{1}{12}{23}{34} {1}{2}{13}{24}
{1}{23}{24}{34} {1}{2}{13}{34}
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}],{n}],Count[#,{_}]==k&]]], {n,0,4},{k,0,n}]
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
row(n) = {my(s=0, A=1+O(x*x^n)); forpart(p=n, s+=permcount(p) * polcoef(edges(p, i->A + x^i)*prod(i=1, #p, A + (x*y)^p[i]), n)); Vecrev(s/n!)} \\ Andrew Howroyd, Jan 13 2024
A369201
Number of unlabeled simple graphs with n vertices and n edges such that it is not possible to choose a different vertex from each edge (non-choosable).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 7, 30, 124, 507, 2036, 8216, 33515, 138557, 583040, 2503093, 10985364, 49361893, 227342301, 1073896332, 5204340846, 25874724616, 131937166616, 689653979583, 3693193801069, 20247844510508, 113564665880028, 651138092719098, 3813739129140469
Offset: 0
The a(0) = 0 through a(6) = 7 simple graphs:
. . . . . {{12}{13}{14}{23}{24}} {{12}{13}{14}{15}{23}{24}}
{{12}{13}{14}{15}{23}{45}}
{{12}{13}{14}{23}{24}{34}}
{{12}{13}{14}{23}{24}{35}}
{{12}{13}{14}{23}{24}{56}}
{{12}{13}{14}{23}{25}{45}}
{{12}{13}{14}{25}{35}{45}}
For labeled set-systems we have
A368600.
A054548 counts graphs covering n vertices with k edges, with loops
A369199.
-
brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n],{2}],{n}],Select[Tuples[#],UnsameQ@@#&]=={}&]]],{n,0,5}]
A369202
Number of unlabeled simple graphs covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).
Original entry on oeis.org
0, 0, 0, 0, 2, 13, 95, 826, 11137, 261899, 11729360, 1006989636, 164072166301, 50336940172142, 29003653625802754, 31397431814146891910, 63969589218557753075156, 245871863137828405124380563, 1787331789281458167615190373076, 24636021675399858912682459601585276
Offset: 0
Representatives of the a(4) = 2 and a(5) = 13 simple graphs:
{12}{13}{14}{23}{24} {12}{13}{14}{15}{23}{24}
{12}{13}{14}{23}{24}{34} {12}{13}{14}{15}{23}{45}
{12}{13}{14}{23}{24}{35}
{12}{13}{14}{23}{25}{45}
{12}{13}{14}{25}{35}{45}
{12}{13}{14}{15}{23}{24}{25}
{12}{13}{14}{15}{23}{24}{34}
{12}{13}{14}{15}{23}{24}{35}
{12}{13}{14}{23}{24}{35}{45}
{12}{13}{14}{15}{23}{24}{25}{34}
{12}{13}{14}{15}{23}{24}{35}{45}
{12}{13}{14}{15}{23}{24}{25}{34}{35}
{12}{13}{14}{15}{23}{24}{25}{34}{35}{45}
The complement is counted by
A368834.
A005703 counts unlabeled connected choosable simple graphs, labeled
A129271.
A054548 counts graphs covering n vertices with k edges, with loops
A369199.
Cf.
A000088,
A000612,
A006649,
A001434,
A055621,
A137916,
A137917,
A140638,
A368596,
A369141,
A369146.
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]]],{n,0,5}]
A368926
Triangle read by rows where T(n,k) is the number of unlabeled loop-graphs on n vertices with k loops and n-k non-loops such that it is possible to choose a different element from each edge.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 1, 2, 1, 1, 2, 5, 3, 1, 1, 5, 12, 7, 3, 1, 1, 14, 29, 19, 8, 3, 1, 1, 35, 75, 47, 21, 8, 3, 1, 1, 97, 191, 127, 54, 22, 8, 3, 1, 1, 264, 504, 331, 149, 56, 22, 8, 3, 1, 1, 733, 1339, 895, 395, 156, 57, 22, 8, 3, 1, 1
Offset: 0
Triangle begins:
1
0 1
0 1 1
1 2 1 1
2 5 3 1 1
5 12 7 3 1 1
14 29 19 8 3 1 1
35 75 47 21 8 3 1 1
Without the choice condition we have
A368836.
Cf.
A057500,
A116508,
A133686,
A367863,
A367869,
A368596,
A368597,
A368598,
A368601,
A368836,
A368927.
-
Table[Length[Union[sysnorm /@ Select[Subsets[Subsets[Range[n],{1,2}],{n}],Count[#,{_}]==k && Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]]], {n,0,5},{k,0,n}]
-
\\ TreeGf gives gf of A000081; G(n,1) is gf of A368983.
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
G(n,y)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); 1 + (sum(d=1, n, eulerphi(d)/d*log(1/(1-g(d)))) + ((1+g(1))^2/(1-g(2))-1)/2 - (g(1)^2 + g(2)))/2 + (y-1)*g(1)}
EulerMTS(p)={my(n=serprec(p,x)-1,vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i))}
T(n)={[Vecrev(p) | p <- Vec(EulerMTS(G(n,y) - 1))]}
{ my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 14 2024
Comments