cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A369146 Number of unlabeled loop-graphs with up to n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 1, 8, 60, 471, 4911, 78797, 2207405, 113740613, 10926218807, 1956363413115, 652335084532025, 405402273420833338, 470568642161119515627, 1023063423471189429817807, 4178849203082023236054797465, 32168008290073542372004072630072, 468053896898117580623237189882068990
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2024

Keywords

Examples

			The a(0) = 0 through a(3) = 8 loop-graphs (loops shown as singletons):
  .  .  {{1},{2},{1,2}}  {{1},{2},{1,2}}
                         {{1},{2},{3},{1,2}}
                         {{1},{2},{1,2},{1,3}}
                         {{1},{2},{1,3},{2,3}}
                         {{1},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3}}
                         {{1},{2},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Without the choice condition we have A000666, labeled A006125 (shifted).
For a unique choice we have A087803, labeled A088957.
The case without loops is A140637, labeled A367867 (covering A367868).
For exactly n edges we have A368835, labeled A368596.
The labeled complement is A368927, covering A369140.
The labeled version is A369141, covering A369142.
The complement is counted by A369145, covering A369200.
The covering case is A369147.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A129271 counts connected choosable simple graphs, unlabeled A005703.
A322661 counts labeled covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Select[Tuples[#],UnsameQ@@#&]=={}&]]],{n,0,4}]

Formula

Partial sums of A369147.
a(n) = A000666(n) - A369145(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(6) onwards from Andrew Howroyd, Feb 02 2024

A368730 Number of n-element sets of singletons or pairs of distinct elements of {1..n} with union {1..n}, or loop-graphs covering n vertices with n edges, such that it is not possible to choose a different element from each.

Original entry on oeis.org

0, 0, 0, 0, 6, 180, 4560, 117600, 3234588, 96119982, 3092585310, 107542211535, 4029055302855, 162040513972623, 6970457656110039, 319598974394563500, 15568332397812799920, 803271954062642638830, 43778508937914677872788, 2513783434620146896920843
Offset: 0

Views

Author

Gus Wiseman, Jan 04 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(4) = 6 set-systems:
  {{1},{2},{1,2},{3,4}}
  {{1},{3},{1,3},{2,4}}
  {{1},{4},{1,4},{2,3}}
  {{2},{3},{1,4},{2,3}}
  {{2},{4},{1,3},{2,4}}
  {{3},{4},{1,2},{3,4}}
		

Crossrefs

The case of a unique choice appears to be A000272.
The version without the choice condition is A368597, non-covering A014068.
The complement appears to be A333331.
The non-covering case is A368596, allowing edges of any size A368600.
Allowing any number of edges of any size gives A367903, ranks A367907.
Allowing any number of non-singletons gives A367868, non-covering A367867.
A000085 counts set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A100861 counts set partitions into singletons or pairs by number of pairs.
A111924 counts set partitions into singletons or pairs by length.
A322661 counts labeled covering half-loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}], {n}],Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]

Formula

a(n) = A368596(n) + A368597(n) - A014068(n). - Andrew Howroyd, Jan 10 2024

Extensions

Terms a(7) and beyond from Andrew Howroyd, Jan 10 2024

A368924 Triangle read by rows where T(n,k) is the number of labeled loop-graphs on n vertices with k loops and n-k non-loops such that it is possible to choose a different vertex from each edge.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 1, 9, 6, 1, 15, 68, 48, 12, 1, 222, 720, 510, 150, 20, 1, 3670, 9738, 6825, 2180, 360, 30, 1, 68820, 159628, 110334, 36960, 6895, 735, 42, 1, 1456875, 3067320, 2090760, 721560, 145530, 17976, 1344, 56, 1, 34506640, 67512798, 45422928, 15989232, 3402756, 463680, 40908, 2268, 72, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 10 2024

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Triangle begins:
      1
      0      1
      0      2      1
      1      9      6      1
     15     68     48     12      1
    222    720    510    150     20      1
   3670   9738   6825   2180    360     30      1
  68820 159628 110334  36960   6895    735     42      1
Row n = 3 counts the following loop-graphs:
  {{1,2},{1,3},{2,3}}  {{1},{1,2},{1,3}}  {{1},{2},{1,3}}  {{1},{2},{3}}
                       {{1},{1,2},{2,3}}  {{1},{2},{2,3}}
                       {{1},{1,3},{2,3}}  {{1},{3},{1,2}}
                       {{2},{1,2},{1,3}}  {{1},{3},{2,3}}
                       {{2},{1,2},{2,3}}  {{2},{3},{1,2}}
                       {{2},{1,3},{2,3}}  {{2},{3},{1,3}}
                       {{3},{1,2},{1,3}}
                       {{3},{1,2},{2,3}}
                       {{3},{1,3},{2,3}}
		

Crossrefs

Column k = n-1 is A002378.
The case of a unique choice is A061356, row sums A000272.
Column k = 0 is A137916, unlabeled version A137917.
Row sums appear to be A333331.
The complement has row sums A368596, covering case A368730.
The unlabeled version is A368926.
Without the choice condition we have A368928, A116508, A367863, A368597.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A014068 counts loop-graphs, unlabeled A000666.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]],{n,0,5},{k,0,n}]
  • PARI
    T(n)={my(t=-lambertw(-x + O(x*x^n))); [Vecrev(p) | p <- Vec(serlaplace(exp(-log(1-t)/2 - t/2 + t*y - t^2/4)))]}
    { my(A=T(8)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 14 2024

Formula

E.g.f.: A(x,y) = exp(-log(1-T(x))/2 - T(x)/2 + y*T(x) - T(x)^2/4) where T(x) = -LambertW(-x) is the e.g.f. of A000169. - Andrew Howroyd, Jan 14 2024

Extensions

a(36) onwards from Andrew Howroyd, Jan 14 2024

A369145 Number of unlabeled loop-graphs with up to n vertices such that it is possible to choose a different vertex from each edge (choosable).

Original entry on oeis.org

1, 2, 5, 12, 30, 73, 185, 467, 1207, 3147, 8329, 22245, 60071, 163462, 448277, 1236913, 3432327, 9569352, 26792706, 75288346, 212249873, 600069431, 1700826842, 4831722294, 13754016792, 39224295915, 112048279650, 320563736148, 918388655873, 2634460759783, 7566000947867
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2024

Keywords

Comments

a(n) is the number of graphs with loops on n unlabeled vertices with every connected component having no more edges than vertices. - Andrew Howroyd, Feb 02 2024

Examples

			The a(0) = 1 through a(3) = 12 loop-graphs (loops shown as singletons):
  {}  {}     {}           {}
      {{1}}  {{1}}        {{1}}
             {{1,2}}      {{1,2}}
             {{1},{2}}    {{1},{2}}
             {{1},{1,2}}  {{1},{1,2}}
                          {{1},{2,3}}
                          {{1,2},{1,3}}
                          {{1},{2},{3}}
                          {{1},{2},{1,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1,2},{1,3},{2,3}}
		

Crossrefs

Without the choice condition we get A000666, labeled A006125 (shifted left).
The case of a unique choice is A087803, labeled A088957.
Without loops we have A134964, labeled A133686 (covering A367869).
For exactly n edges and no loops we have A137917, labeled A137916.
The labeled version is A368927, covering A369140.
The labeled complement is A369141, covering A369142.
For exactly n edges we have A368984, labeled A333331 (maybe).
The complement for exactly n edges is A368835, labeled A368596.
The complement is counted by A369146, labeled A369141 (covering A369142).
The covering case is A369200.
The complement for exactly n edges and no loops is A369201, labeled A369143.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A129271 counts connected choosable simple graphs, unlabeled A005703.
A322661 counts labeled covering loop-graphs, unlabeled A322700.
A367867 counts non-choosable labeled graphs, covering A367868.
A368927 counts choosable labeled loop-graphs, covering A369140.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]]],{n,0,4}]

Formula

Partial sums of A369200.
Euler transform of A369289. - Andrew Howroyd, Feb 02 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 02 2024

A369143 Number of labeled simple graphs with n edges and n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 0, 0, 0, 30, 1335, 47460, 1651230, 59636640, 2284113762, 93498908580, 4099070635935, 192365988161490, 9646654985111430, 515736895712230192, 29321225548502776980, 1768139644819077541440, 112805126206185257070660, 7595507651522103787077270, 538504704005397535690160274
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2024

Keywords

Examples

			The term a(5) = 30 counts all permutations of the graph {{1,2},{1,3},{1,4},{2,3},{2,4}}.
		

Crossrefs

The version without the choice condition is A116508, covering A367863.
The complement is A137916.
Allowing any number of edges gives A367867, covering A367868.
The version with loops is A368596, covering A368730, unlabeled A368835.
For set-systems we have A368600, for any number of edges A367903.
The covering case is A369144.
A006125 counts simple graphs, unlabeled A000088.
A058891 counts set-systems (without singletons A016031), unlabeled A000612.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}], {n}],Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]

Formula

a(n) = A116508(n) - A137916(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(8) onwards from Andrew Howroyd, Feb 02 2024

A369144 Number of labeled simple graphs with n edges covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 90, 4935, 200970, 7636860, 291089610, 11459170800, 471932476290, 20447369179380, 933942958593645, 44981469288560805, 2282792616992648670, 121924195590795244920, 6843305987751060036720, 403003907531795513467260, 24861219342100679072572470
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2024

Keywords

Examples

			The term a(6) = 90 counts all permutations of the (non-connected) graph {{1,2},{1,3},{1,4},{2,3},{2,4},{5,6}}.
		

Crossrefs

The covering complement is counted by A137916.
Without the choice condition we have A367863, covering case of A116508.
Allowing any number of edges gives A367868, covering case of A367867.
With loops we have A368730, covering case of A368596, unlabeled A368835.
This is the covering case of A369143.
A003465 counts covering set-systems, unlabeled A055621.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A058891 counts set-systems, unlabeled A000612.
A322661 counts covering loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}], {n}],Union@@#==Range[n]&&Length[Select[Tuples[#], UnsameQ@@#&]]==0&]],{n,0,6}]

Formula

a(n) = A367863(n) - A137916(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(8) onwards from Andrew Howroyd, Feb 02 2024

A368836 Triangle read by rows where T(n,k) is the number of unlabeled loop-graphs on up to n vertices with k loops and n-k non-loops.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 2, 6, 6, 2, 1, 6, 17, 18, 8, 2, 1, 21, 52, 58, 30, 9, 2, 1, 65, 173, 191, 107, 37, 9, 2, 1, 221, 585, 666, 393, 148, 39, 9, 2, 1, 771, 2064, 2383, 1493, 589, 168, 40, 9, 2, 1, 2769, 7520, 8847, 5765, 2418, 718, 176, 40, 9, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2024

Keywords

Comments

Are the row sums the same as column k = 1 (shifted left)?
Yes. When k = 1 there is one loop. Remove the vertex with the loop and add loops to its neighbors. This process is reversible so there is a bijection. - Andrew Howroyd, Jan 13 2024

Examples

			Triangle begins:
   1
   0  1
   0  1  1
   1  2  2  1
   2  6  6  2  1
   6 17 18  8  2  1
  21 52 58 30  9  2  1
Representatives of the loop-graphs counted by row n = 4:
  {12}{13}{14}{23} {1}{12}{13}{14} {1}{2}{12}{13} {1}{2}{3}{12} {1}{2}{3}{4}
  {12}{13}{24}{34} {1}{12}{13}{23} {1}{2}{12}{34} {1}{2}{3}{14}
                   {1}{12}{13}{24} {1}{2}{13}{14}
                   {1}{12}{23}{24} {1}{2}{13}{23}
                   {1}{12}{23}{34} {1}{2}{13}{24}
                   {1}{23}{24}{34} {1}{2}{13}{34}
		

Crossrefs

Column k = 0 is A001434.
Row sums are A368598.
The labeled version is A368928.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A014068 counts loop-graphs, unlabeled A000666.
A058891 counts set-systems, unlabeled A000612.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}],{n}],Count[#,{_}]==k&]]], {n,0,4},{k,0,n}]
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    row(n) = {my(s=0, A=1+O(x*x^n)); forpart(p=n, s+=permcount(p) * polcoef(edges(p, i->A + x^i)*prod(i=1, #p, A + (x*y)^p[i]), n)); Vecrev(s/n!)} \\ Andrew Howroyd, Jan 13 2024

Extensions

a(28) onwards from Andrew Howroyd, Jan 13 2024

A369201 Number of unlabeled simple graphs with n vertices and n edges such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 7, 30, 124, 507, 2036, 8216, 33515, 138557, 583040, 2503093, 10985364, 49361893, 227342301, 1073896332, 5204340846, 25874724616, 131937166616, 689653979583, 3693193801069, 20247844510508, 113564665880028, 651138092719098, 3813739129140469
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2024

Keywords

Comments

These are graphs with n vertices and n edges having at least two cycles in the same component.

Examples

			The a(0) = 0 through a(6) = 7 simple graphs:
  .  .  .  .  .  {{12}{13}{14}{23}{24}}  {{12}{13}{14}{15}{23}{24}}
                                         {{12}{13}{14}{15}{23}{45}}
                                         {{12}{13}{14}{23}{24}{34}}
                                         {{12}{13}{14}{23}{24}{35}}
                                         {{12}{13}{14}{23}{24}{56}}
                                         {{12}{13}{14}{23}{25}{45}}
                                         {{12}{13}{14}{25}{35}{45}}
		

Crossrefs

Without the choice condition we have A001434, covering A006649.
The labeled version without choice is A116508, covering A367863, A367862.
The complement is counted by A137917, labeled A137916.
For any number of edges we have A140637, complement A134964.
For labeled set-systems we have A368600.
The case with loops is A368835, labeled A368596.
The labeled version is A369143, covering A369144.
A006129 counts covering graphs, unlabeled A002494.
A007716 counts unlabeled multiset partitions, connected A007718.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A129271 counts connected choosable simple graphs, unlabeled A005703.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n],{2}],{n}],Select[Tuples[#],UnsameQ@@#&]=={}&]]],{n,0,5}]

Formula

a(n) = A001434(n) - A137917(n).

Extensions

a(25) onwards from Andrew Howroyd, Feb 02 2024

A369202 Number of unlabeled simple graphs covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 0, 0, 2, 13, 95, 826, 11137, 261899, 11729360, 1006989636, 164072166301, 50336940172142, 29003653625802754, 31397431814146891910, 63969589218557753075156, 245871863137828405124380563, 1787331789281458167615190373076, 24636021675399858912682459601585276
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2024

Keywords

Comments

These are simple graphs covering n vertices such that some connected component has at least two cycles.

Examples

			Representatives of the a(4) = 2 and a(5) = 13 simple graphs:
  {12}{13}{14}{23}{24}      {12}{13}{14}{15}{23}{24}
  {12}{13}{14}{23}{24}{34}  {12}{13}{14}{15}{23}{45}
                            {12}{13}{14}{23}{24}{35}
                            {12}{13}{14}{23}{25}{45}
                            {12}{13}{14}{25}{35}{45}
                            {12}{13}{14}{15}{23}{24}{25}
                            {12}{13}{14}{15}{23}{24}{34}
                            {12}{13}{14}{15}{23}{24}{35}
                            {12}{13}{14}{23}{24}{35}{45}
                            {12}{13}{14}{15}{23}{24}{25}{34}
                            {12}{13}{14}{15}{23}{24}{35}{45}
                            {12}{13}{14}{15}{23}{24}{25}{34}{35}
                            {12}{13}{14}{15}{23}{24}{25}{34}{35}{45}
		

Crossrefs

Without the choice condition we have A002494, labeled A006129.
The connected case is A140636.
This is the covering case of A140637, complement A134964.
The labeled version is A367868, complement A367869.
The complement is counted by A368834.
The version with loops is A369147, complement A369200.
A005703 counts unlabeled connected choosable simple graphs, labeled A129271.
A007716 counts unlabeled multiset partitions, connected A007718.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A283877 counts unlabeled set-systems, connected A300913.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]]],{n,0,5}]

Formula

First differences of A140637.
a(n) = A002494(n) - A368834(n).

A368926 Triangle read by rows where T(n,k) is the number of unlabeled loop-graphs on n vertices with k loops and n-k non-loops such that it is possible to choose a different element from each edge.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 1, 1, 2, 5, 3, 1, 1, 5, 12, 7, 3, 1, 1, 14, 29, 19, 8, 3, 1, 1, 35, 75, 47, 21, 8, 3, 1, 1, 97, 191, 127, 54, 22, 8, 3, 1, 1, 264, 504, 331, 149, 56, 22, 8, 3, 1, 1, 733, 1339, 895, 395, 156, 57, 22, 8, 3, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2024

Keywords

Comments

Also the number of unlabeled loop-graphs covering n vertices with k loops and n-k non-loops such that each connected component has the same number of edges as vertices.

Examples

			Triangle begins:
   1
   0  1
   0  1  1
   1  2  1  1
   2  5  3  1  1
   5 12  7  3  1  1
  14 29 19  8  3  1  1
  35 75 47 21  8  3  1  1
		

Crossrefs

The case of a unique choice is A106234, row sums A000081.
Column k = 0 is A137917, labeled version A137916.
Without the choice condition we have A368836.
The labeled version is A368924, row sums maybe A333331.
Row sums are A368984, complement A368835.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A014068 counts loop-graphs, unlabeled A000666.
A322661 counts labeled covering half-loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Union[sysnorm /@ Select[Subsets[Subsets[Range[n],{1,2}],{n}],Count[#,{_}]==k && Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]]], {n,0,5},{k,0,n}]
  • PARI
    \\ TreeGf gives gf of A000081; G(n,1) is gf of A368983.
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    G(n,y)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); 1 + (sum(d=1, n, eulerphi(d)/d*log(1/(1-g(d)))) + ((1+g(1))^2/(1-g(2))-1)/2 - (g(1)^2 + g(2)))/2 + (y-1)*g(1)}
    EulerMTS(p)={my(n=serprec(p,x)-1,vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i))}
    T(n)={[Vecrev(p) | p <- Vec(EulerMTS(G(n,y) - 1))]}
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 14 2024

Extensions

a(36) onwards from Andrew Howroyd, Jan 14 2024
Previous Showing 11-20 of 21 results. Next