A369143
Number of labeled simple graphs with n edges and n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).
Original entry on oeis.org
0, 0, 0, 0, 0, 30, 1335, 47460, 1651230, 59636640, 2284113762, 93498908580, 4099070635935, 192365988161490, 9646654985111430, 515736895712230192, 29321225548502776980, 1768139644819077541440, 112805126206185257070660, 7595507651522103787077270, 538504704005397535690160274
Offset: 0
The term a(5) = 30 counts all permutations of the graph {{1,2},{1,3},{1,4},{2,3},{2,4}}.
The version without the choice condition is
A116508, covering
A367863.
-
Table[Length[Select[Subsets[Subsets[Range[n],{2}], {n}],Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]
A369144
Number of labeled simple graphs with n edges covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 90, 4935, 200970, 7636860, 291089610, 11459170800, 471932476290, 20447369179380, 933942958593645, 44981469288560805, 2282792616992648670, 121924195590795244920, 6843305987751060036720, 403003907531795513467260, 24861219342100679072572470
Offset: 0
The term a(6) = 90 counts all permutations of the (non-connected) graph {{1,2},{1,3},{1,4},{2,3},{2,4},{5,6}}.
The covering complement is counted by
A137916.
Without the choice condition we have
A367863, covering case of
A116508.
This is the covering case of
A369143.
-
Table[Length[Select[Subsets[Subsets[Range[n],{2}], {n}],Union@@#==Range[n]&&Length[Select[Tuples[#], UnsameQ@@#&]]==0&]],{n,0,6}]
A369201
Number of unlabeled simple graphs with n vertices and n edges such that it is not possible to choose a different vertex from each edge (non-choosable).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 7, 30, 124, 507, 2036, 8216, 33515, 138557, 583040, 2503093, 10985364, 49361893, 227342301, 1073896332, 5204340846, 25874724616, 131937166616, 689653979583, 3693193801069, 20247844510508, 113564665880028, 651138092719098, 3813739129140469
Offset: 0
The a(0) = 0 through a(6) = 7 simple graphs:
. . . . . {{12}{13}{14}{23}{24}} {{12}{13}{14}{15}{23}{24}}
{{12}{13}{14}{15}{23}{45}}
{{12}{13}{14}{23}{24}{34}}
{{12}{13}{14}{23}{24}{35}}
{{12}{13}{14}{23}{24}{56}}
{{12}{13}{14}{23}{25}{45}}
{{12}{13}{14}{25}{35}{45}}
For labeled set-systems we have
A368600.
A054548 counts graphs covering n vertices with k edges, with loops
A369199.
-
brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n],{2}],{n}],Select[Tuples[#],UnsameQ@@#&]=={}&]]],{n,0,5}]
A361718
Triangular array read by rows. T(n,k) is the number of labeled directed acyclic graphs on [n] with exactly k nodes of indegree 0.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 15, 9, 1, 0, 316, 198, 28, 1, 0, 16885, 10710, 1610, 75, 1, 0, 2174586, 1384335, 211820, 10575, 186, 1, 0, 654313415, 416990763, 64144675, 3268125, 61845, 441, 1, 0, 450179768312, 286992935964, 44218682312, 2266772550, 43832264, 336924, 1016, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 15, 9, 1;
0, 316, 198, 28, 1;
0, 16885, 10710, 1610, 75, 1;
...
Cf.
A000169,
A059201,
A082402,
A088957,
A133686,
A334282,
A350415,
A367904,
A367908,
A368600,
A368601.
-
nn = 8; B[n_] := n! 2^Binomial[n, 2] ;ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-z]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid
nv=4;Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]==1&]],{n,0,nv},{k,0,n}]
A368602
Triangle read by rows where T(n,k) is the number of labeled acyclic digraphs on {1..n} with sinks {1..k}.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 5, 3, 1, 0, 79, 33, 7, 1, 0, 3377, 1071, 161, 15, 1, 0, 362431, 92289, 10591, 705, 31, 1, 0, 93473345, 19856703, 1832705, 93375, 2945, 63, 1, 0, 56272471039, 10249747713, 789619327, 32382465, 782719, 12033, 127, 1
Offset: 0
Triangle begins:
1
0 1
0 1 1
0 5 3 1
0 79 33 7 1
0 3377 1071 161 15 1
...
Row n = 3 counts the following set-systems:
{{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{2},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
For any choice of k sinks we get
A361718.
A059201 counts covering T_0 set-systems.
Cf.
A000169,
A003024,
A003087,
A082402,
A088957,
A334282,
A367862,
A367904,
A367908,
A368600,
A368601.
-
Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Union@@Cases[#,{_}]==Range[k] && Length[Select[Tuples[#],UnsameQ@@#&]]==1&]], {n,0,3},{k,0,n}]
A370818
Number of sets of nonempty subsets of {1..n} with only one possible way to choose a set of different vertices of each edge.
Original entry on oeis.org
1, 2, 6, 45, 1352, 157647, 63380093, 85147722812, 385321270991130
Offset: 0
The set-system {{2},{1,2},{2,4},{1,3,4}} has unique choice (2,1,4,3) so is counted under a(4).
Factorizations of this type are counted by
A370645.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
-
Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Union[Sort/@Select[Tuples[#],UnsameQ@@#&]]]==1&]],{n,0,3}]
Comments