cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A371733 Maximal length of a factorization of n into factors > 1 all having the same sum of prime indices.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Sum of prime indices is given by A056239.
Factorizations into factors all having the same sum of prime indices are counted by A321455.

Examples

			The factorizations of 588 of this type are (7*7*12), (21*28), (588), so a(588) = 3.
The factorizations of 900 of this type are (5*5*6*6), (9*10*10), (25*36), (30*30), (900), so a(900) = 4.
		

Crossrefs

Positions of 1's are A321453, counted by A321451.
Positions of terms > 1 are A321454, counted by A321452.
Factorizations of this type are counted by A321455, different sums A321469.
For different sums instead of same sums we have A371734.
For set partitions of binary indices we have A371735.
A001055 counts factorizations.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A321142 and A371794 count non-biquanimous strict partitions.
A371789 counts non-quanimous sets, differences A371790.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    Table[Max[Length/@Select[facs[n],SameQ@@hwt/@#&]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    all_have_same_sum_of_pis(facs) = if(!#facs, 1, (#Set(apply(A056239,facs)) == 1));
    A371733(n, m=n, facs=List([])) = if(1==n, if(all_have_same_sum_of_pis(facs),#facs,0), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s = max(s, A371733(n/d, d, newfacs)))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(108) by Antti Karttunen, Jan 20 2025

A371788 Triangle read by rows where T(n,k) is the number of set partitions of {1..n} with exactly k distinct block-sums.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 8, 4, 1, 0, 2, 19, 24, 6, 1, 0, 2, 47, 95, 49, 9, 1, 0, 6, 105, 363, 297, 93, 12, 1, 0, 12, 248, 1292, 1660, 753, 158, 16, 1, 0, 11, 563, 4649, 8409, 5591, 1653, 250, 20, 1, 0, 2, 1414, 15976, 41264, 38074, 15590, 3249, 380, 25, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2024

Keywords

Examples

			The set partition {{1,3},{2},{4}} has two distinct block-sums {2,4} so is counted under T(4,2).
Triangle begins:
     1
     0     1
     0     1     1
     0     2     2     1
     0     2     8     4     1
     0     2    19    24     6     1
     0     2    47    95    49     9     1
     0     6   105   363   297    93    12     1
     0    12   248  1292  1660   753   158    16     1
     0    11   563  4649  8409  5591  1653   250    20     1
     0     2  1414 15976 41264 38074 15590  3249   380    25     1
Row n = 4 counts the following set partitions:
  .  {{1,4},{2,3}}  {{1},{2,3,4}}    {{1},{2},{3,4}}  {{1},{2},{3},{4}}
     {{1,2,3,4}}    {{1,2},{3},{4}}  {{1},{2,3},{4}}
                    {{1,2},{3,4}}    {{1},{2,4},{3}}
                    {{1,3},{2},{4}}  {{1,4},{2},{3}}
                    {{1,3},{2,4}}
                    {{1,2,3},{4}}
                    {{1,2,4},{3}}
                    {{1,3,4},{2}}
		

Crossrefs

Row sums are A000110.
Column k = 1 is A035470.
A version for integer partitions is A116608.
For block lengths instead of sums we have A208437.
A008277 counts set partitions by length.
A275780 counts set partitions with distinct block-sums.
A371737 counts quanimous strict partitions, non-strict A321452.
A371789 counts non-quanimous sets, differences A371790.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]], Length[Union[Total/@#]]==k&]],{n,0,5},{k,0,n}]

A371735 Maximal length of a set partition of the binary indices of n into blocks all having the same sum.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
If a(n) = k then the binary indices of n (row n of A048793) are k-quanimous (counted by A371783).

Examples

			The binary indices of 119 are {1,2,3,5,6,7}, and the set partitions into blocks with the same sum are:
  {{1,7},{2,6},{3,5}}
  {{1,5,6},{2,3,7}}
  {{1,2,3,6},{5,7}}
  {{1,2,3,5,6,7}}
So a(119) = 3.
		

Crossrefs

Set partitions of this type are counted by A035470, A336137.
A version for factorizations is A371733.
Positions of 1's are A371738.
Positions of terms > 1 are A371784.
A001055 counts factorizations.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A321452 counts quanimous partitions, ranks A321454.
A326031 gives weight of the set-system with BII-number n.
A371783 counts k-quanimous partitions.
A371789 counts non-quanimous sets, differences A371790.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Max[Length/@Select[sps[bix[n]],SameQ@@Total/@#&]],{n,0,100}]

A371738 Numbers with non-quanimous binary indices. Numbers whose binary indices have only one set partition with all equal block-sums.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 23, 24, 26, 28, 29, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 46, 48, 50, 52, 53, 55, 56, 57, 58, 61, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 77, 78, 79, 80, 81, 83, 84, 86, 88, 89, 91, 92
Offset: 1

Views

Author

Gus Wiseman, Apr 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The binary indices of 165 are {1,3,6,8}, with qualifying set partitions {{1,8},{3,6}}, and {{1,3,6,8}}, so 165 is not in the sequence.
The terms together with their binary expansions and binary indices begin:
   1:     1 ~ {1}
   2:    10 ~ {2}
   3:    11 ~ {1,2}
   4:   100 ~ {3}
   5:   101 ~ {1,3}
   6:   110 ~ {2,3}
   8:  1000 ~ {4}
   9:  1001 ~ {1,4}
  10:  1010 ~ {2,4}
  11:  1011 ~ {1,2,4}
  12:  1100 ~ {3,4}
  14:  1110 ~ {2,3,4}
  16: 10000 ~ {5}
  17: 10001 ~ {1,5}
  18: 10010 ~ {2,5}
  19: 10011 ~ {1,2,5}
  20: 10100 ~ {3,5}
  21: 10101 ~ {1,3,5}
  23: 10111 ~ {1,2,3,5}
		

Crossrefs

Set partitions with all equal block-sums are counted by A035470.
Positions of 1's in A336137 and A371735.
The complement is A371784.
A000110 counts set partitions.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A371789 counts non-quanimous sets, differences A371790.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Select[Range[100],Length[Select[sps[bix[#]],SameQ@@Total/@#&]]==1&]

A371784 Numbers with quanimous binary indices. Numbers whose binary indices can be partitioned in more than one way into blocks with the same sum.

Original entry on oeis.org

7, 13, 15, 22, 25, 27, 30, 31, 39, 42, 45, 47, 49, 51, 54, 59, 60, 62, 63, 75, 76, 82, 85, 87, 90, 93, 94, 95, 97, 99, 102, 107, 108, 109, 110, 115, 117, 119, 120, 122, 125, 126, 127, 141, 143, 147, 148, 153, 155, 158, 162, 165, 167, 170, 173, 175, 179, 180
Offset: 1

Views

Author

Gus Wiseman, Apr 16 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The binary indices of 165 are {1,3,6,8}, with qualifying set partitions {{1,8},{3,6}}, and {{1,3,6,8}}, so 165 is in the sequence.
The terms together with their binary expansions and binary indices begin:
   7:     111 ~ {1,2,3}
  13:    1101 ~ {1,3,4}
  15:    1111 ~ {1,2,3,4}
  22:   10110 ~ {2,3,5}
  25:   11001 ~ {1,4,5}
  27:   11011 ~ {1,2,4,5}
  30:   11110 ~ {2,3,4,5}
  31:   11111 ~ {1,2,3,4,5}
  39:  100111 ~ {1,2,3,6}
  42:  101010 ~ {2,4,6}
  45:  101101 ~ {1,3,4,6}
  47:  101111 ~ {1,2,3,4,6}
  49:  110001 ~ {1,5,6}
  51:  110011 ~ {1,2,5,6}
  54:  110110 ~ {2,3,5,6}
  59:  111011 ~ {1,2,4,5,6}
  60:  111100 ~ {3,4,5,6}
  62:  111110 ~ {2,3,4,5,6}
  63:  111111 ~ {1,2,3,4,5,6}
		

Crossrefs

Set partitions with all equal block-sums are counted by A035470.
Positions of terms > 1 in A336137 and A371735.
The complement is A371738.
A000110 counts set partitions.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A371789 counts non-quanimous sets, differences A371790.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Select[Range[100],Length[Select[sps[bix[#]],SameQ@@Total/@#&]]>1&]
Previous Showing 11-15 of 15 results.