cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A372589 Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is even.

Original entry on oeis.org

3, 4, 5, 9, 12, 13, 14, 16, 17, 20, 22, 23, 25, 30, 31, 35, 36, 37, 38, 39, 42, 43, 48, 49, 52, 53, 54, 56, 57, 58, 61, 63, 64, 66, 67, 68, 69, 73, 75, 77, 80, 82, 83, 85, 88, 90, 92, 93, 94, 97, 99, 100, 102, 103, 109, 110, 115, 118, 119, 120, 121, 123, 124
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The odd version is A372588.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
        {1,2}   3  (2)
          {3}   4  (1,1)
        {1,3}   5  (3)
        {1,4}   9  (2,2)
        {3,4}  12  (2,1,1)
      {1,3,4}  13  (6)
      {2,3,4}  14  (4,1)
          {5}  16  (1,1,1,1)
        {1,5}  17  (7)
        {3,5}  20  (3,1,1)
      {2,3,5}  22  (5,1)
    {1,2,3,5}  23  (9)
      {1,4,5}  25  (3,3)
    {2,3,4,5}  30  (3,2,1)
  {1,2,3,4,5}  31  (11)
      {1,2,6}  35  (4,3)
        {3,6}  36  (2,2,1,1)
      {1,3,6}  37  (12)
      {2,3,6}  38  (8,1)
    {1,2,3,6}  39  (6,2)
      {2,4,6}  42  (4,2,1)
    {1,2,4,6}  43  (14)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372587, complement A372586.
For minimum (A372437) we have A372440, complement A372439.
For length (A372441, zeros A071814) we have A372591, complement A372590.
Positions of even terms in A372442, zeros A372436.
The complement is A372588.
For just binary indices:
- length: A001969, complement A000069
- sum: A158704, complement A158705
- minimum: A036554, complement A003159
- maximum: A053754, complement A053738
For just prime indices:
- length: A026424 A028260 (count A027187), complement (count A027193)
- sum: A300061 (count A058696), complement A300063 (count A058695)
- minimum: A340933 (count A026805), complement A340932 (count A026804)
- maximum: A244990 (count A027187), complement A244991 (count A027193)
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031215 lists even-indexed primes, odd A031368.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[2,100],EvenQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]

Formula

Numbers k such that A070939(k) + A061395(k) is even.

A372590 Numbers whose binary weight (A000120) plus bigomega (A001222) is odd.

Original entry on oeis.org

1, 3, 4, 5, 12, 14, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 29, 30, 35, 38, 43, 45, 48, 49, 53, 55, 56, 62, 63, 64, 66, 68, 69, 71, 72, 74, 75, 78, 80, 81, 82, 83, 84, 87, 88, 89, 91, 92, 93, 94, 99, 100, 101, 102, 104, 105, 108, 113, 114, 115, 116, 118, 120
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

The even version is A372591.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
        {1}   1  ()
      {1,2}   3  (2)
        {3}   4  (1,1)
      {1,3}   5  (3)
      {3,4}  12  (2,1,1)
    {2,3,4}  14  (4,1)
        {5}  16  (1,1,1,1)
      {1,5}  17  (7)
      {2,5}  18  (2,2,1)
      {3,5}  20  (3,1,1)
    {1,3,5}  21  (4,2)
    {2,3,5}  22  (5,1)
  {1,2,3,5}  23  (9)
    {1,4,5}  25  (3,3)
    {2,4,5}  26  (6,1)
  {1,2,4,5}  27  (2,2,2)
  {1,3,4,5}  29  (10)
  {2,3,4,5}  30  (3,2,1)
    {1,2,6}  35  (4,3)
    {2,3,6}  38  (8,1)
  {1,2,4,6}  43  (14)
  {1,3,4,6}  45  (3,2,2)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372586, complement A372587.
For minimum (A372437) we have A372439, complement A372440.
Positions of odd terms in A372441, zeros A071814.
For maximum (A372442, zeros A372436) we have A372588, complement A372589.
The complement is A372591.
For just binary indices:
- length: A000069, complement A001969
- sum: A158705, complement A158704
- minimum: A003159, complement A036554
- maximum: A053738, complement A053754
For just prime indices:
- length: A026424 (count A027193), complement A028260 (count A027187)
- sum: A300063 (count A058695), complement A300061 (count A058696)
- minimum: A340932 (count A026804), complement A340933 (count A026805)
- maximum: A244991 (count A027193), complement A244990 (count A027187)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[100],OddQ[DigitCount[#,2,1]+PrimeOmega[#]]&]

A372587 Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is even.

Original entry on oeis.org

6, 7, 10, 11, 13, 14, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 49, 50, 52, 56, 57, 58, 62, 69, 70, 72, 74, 75, 76, 77, 82, 83, 85, 86, 87, 88, 90, 92, 96, 98, 100, 102, 103, 104, 106, 107, 108, 109, 112, 117, 120, 123
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The odd version is A372586.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
            {2,3}   6  (2,1)
          {1,2,3}   7  (4)
            {2,4}  10  (3,1)
          {1,2,4}  11  (5)
          {1,3,4}  13  (6)
          {2,3,4}  14  (4,1)
            {2,5}  18  (2,2,1)
          {1,2,5}  19  (8)
          {2,3,5}  22  (5,1)
        {1,2,3,5}  23  (9)
            {4,5}  24  (2,1,1,1)
          {1,4,5}  25  (3,3)
          {2,4,5}  26  (6,1)
        {1,2,4,5}  27  (2,2,2)
          {3,4,5}  28  (4,1,1)
        {2,3,4,5}  30  (3,2,1)
      {1,2,3,4,5}  31  (11)
            {1,6}  33  (5,2)
            {2,6}  34  (7,1)
          {1,2,6}  35  (4,3)
          {1,3,6}  37  (12)
          {2,3,6}  38  (8,1)
		

Crossrefs

Positions of even terms in A372428, zeros A372427.
For minimum (A372437) we have A372440, complement A372439.
For length (A372441, zeros A071814) we have A372591, complement A372590.
For maximum (A372442, zeros A372436) we have A372589, complement A372588.
The complement is A372586.
For just binary indices:
- length: A001969, complement A000069
- sum: A158704, complement A158705
- minimum: A036554, complement A003159
- maximum: A053754, complement A053738
For just prime indices:
- length: A026424 A028260 (count A027187), complement (count A027193)
- sum: A300061 (count A058696), complement A300063 (count A058695)
- minimum: A340933 (count A026805), complement A340932 (count A026804)
- maximum: A244990 (count A027187), complement A244991 (count A027193)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],EvenQ[Total[bix[#]]+Total[prix[#]]]&]

Formula

Numbers k such that A029931(k) + A056239(k) is even.

A372686 Sorted list of positions of first appearances in A014499 (number of ones in binary expansion of each prime).

Original entry on oeis.org

1, 2, 4, 9, 11, 31, 64, 76, 167, 309, 502, 801, 1028, 6363, 7281, 12079, 12251, 43237, 43390, 146605, 291640, 951351, 1046198, 2063216, 3957778, 11134645, 14198321, 28186247, 54387475, 105097565, 249939829, 393248783, 751545789, 1391572698, 2182112798, 8242984130
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

The unsorted version is A372517.

Examples

			The sequence contains 9 because the first 9 terms of A014499 are 1, 2, 2, 3, 3, 3, 2, 3, 4, and the last of these is the first position of 4.
		

Crossrefs

Positions of first appearances in A014499.
The unsorted version is A372517.
For binary length we have A372684, primes A104080, firsts of A035100.
Taking primes gives A372685, unsorted version A061712.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A029837 gives greatest binary index, least A001511.
A030190 gives binary expansion, reversed A030308.
A035103 counts zeros in binary expansion of each prime, firsts A372474.
A048793 lists binary indices, reverse A272020, sum A029931.
A070939 gives length of binary expansion (number of bits).
A372471 lists binary indices of primes.

Programs

  • Mathematica
    First/@GatherBy[Range[1000],DigitCount[Prime[#],2,1]&]

Formula

prime(a(n)) = A372685(n).

Extensions

a(26)-a(36) from Pontus von Brömssen, May 15 2024
Previous Showing 21-24 of 24 results.