A294617
Number of ways to choose a set partition of a strict integer partition of n.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 10, 12, 17, 24, 44, 51, 76, 98, 138, 217, 272, 366, 493, 654, 848, 1284, 1560, 2115, 2718, 3610, 4550, 6024, 8230, 10296, 13354, 17144, 21926, 27903, 35556, 44644, 59959, 73456, 94109, 117735, 150078, 185800, 235719, 290818, 365334, 467923
Offset: 0
The a(6) = 10 set partitions are: {{6}}, {{1},{5}}, {{5,1}}, {{2},{4}}, {{4,2}}, {{1},{2},{3}}, {{1},{3,2}}, {{2,1},{3}}, {{3,1},{2}}, {{3,2,1}}.
-
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
`if`(n=0, combinat[bell](t), b(n, i-1, t)+
`if`(i>n, 0, b(n-i, min(n-i, i-1), t+1))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..50); # Alois P. Heinz, Nov 07 2017
-
Table[Total[BellB[Length[#]]&/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,25}]
(* Second program: *)
b[n_, i_, t_] := b[n, i, t] = If[n > i (i + 1)/2, 0, If[n == 0, BellB[t], b[n, i - 1, t] + If[i > n, 0, b[n - i, Min[n - i, i - 1], t + 1]]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
A374679
Number of integer compositions of n whose leaders of anti-runs are strictly increasing.
Original entry on oeis.org
1, 1, 1, 3, 4, 8, 15, 24, 45, 84, 142, 256, 464, 817, 1464, 2621, 4649, 8299, 14819, 26389, 47033, 83833, 149325, 266011, 473867, 843853
Offset: 0
The a(0) = 1 through a(6) = 15 compositions:
() (1) (2) (3) (4) (5) (6)
(12) (13) (14) (15)
(21) (31) (23) (24)
(121) (32) (42)
(41) (51)
(122) (123)
(131) (132)
(212) (141)
(213)
(231)
(312)
(321)
(1212)
(1221)
(2121)
For distinct but not necessarily increasing leaders we have
A374518.
For partitions instead of compositions we have
A375134.
Other types of runs (instead of anti-):
- For leaders of identical runs we have
A000041.
- For leaders of weakly increasing runs we have
A374634.
- For leaders of strictly increasing runs we have
A374688.
- For leaders of strictly decreasing runs we have
A374762.
Other types of run-leaders (instead of strictly increasing):
- For identical leaders we have
A374517.
- For distinct leaders we have
A374518.
- For weakly increasing leaders we have
A374681.
- For weakly decreasing leaders we have
A374682.
- For strictly decreasing leaders we have
A374680.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs.
A238424 counts partitions whose first differences are an anti-run.
Cf.
A188920,
A238343,
A333213,
A333381,
A373949,
A374515,
A374632,
A374635,
A374678,
A374700,
A374706,
A375133.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,UnsameQ]&]],{n,0,15}]
A374636
Number of integer compositions of n whose leaders of maximal weakly increasing runs are not weakly decreasing.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 3, 10, 28, 72, 178, 425, 985, 2237, 4999, 11016, 24006, 51822, 110983, 236064, 499168, 1050118, 2199304, 4587946, 9537506, 19765213, 40847186, 84205453, 173198096, 355520217, 728426569, 1489977348, 3043054678, 6206298312, 12641504738
Offset: 0
- The maximal weakly increasing runs of y = (1,1,3,2,1) are ((1,1,3),(2),(1)) with leaders (1,2,1) so y is counted under a(8). Also, y matches 1-32 and avoids 23-1.
- The maximal weakly increasing runs of y = (1,3,2,1,1) are ((1,3),(2),(1,1)) with leaders (1,2,1) so y is counted under a(8). Also, y matches 1-32 and avoids 23-1.
- The maximal weakly increasing runs of y = (2,3,1,1,1) are ((2,3),(1,1,1)) with leaders (2,1) so y is not counted under a(8). Also, y avoids 1-32 and matches 23-1.
- The maximal weakly increasing runs of y = (2,3,2,1) are ((2,3),(2),(1)) with leaders (2,2,1) so y is not counted under a(8). Also, y avoids 1-32 and matches 23-1.
- The maximal weakly increasing runs of y = (2,1,3,1,1) are ((2),(1,3),(1,1)) with leaders (2,1,1) so y is not counted under a(8). Also, y avoids both 1-32 and 23-1.
- The maximal weakly increasing runs of y = (2,1,1,3,1) are ((2),(1,1,3),(1)) with leaders (2,1,1) so y is not counted under a(8). Also, y avoids both 1-32 and 23-1.
The a(0) = 0 through a(8) = 10 compositions:
. . . . . . (132) (142) (143)
(1132) (152)
(1321) (1142)
(1232)
(1322)
(1421)
(2132)
(11132)
(11321)
(13211)
The reverse version is the same.
For leaders of identical runs we have
A056823.
The complement is counted by
A189076.
For weakly decreasing runs we have the complement of
A374747.
For leaders of strictly increasing runs we have
A375135, complement
A374697.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
Cf.
A000041,
A188920,
A238343,
A238424,
A333213,
A373949,
A374632,
A374635,
A374678,
A374681,
A375297.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!GreaterEqual@@First/@Split[#,LessEqual]&]],{n,0,15}]
(* or *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,y_,z_,_,x_,_}/;x
A374689
Number of integer compositions of n whose leaders of strictly increasing runs are strictly decreasing.
Original entry on oeis.org
1, 1, 1, 3, 3, 6, 10, 13, 21, 32, 48, 66, 101, 144, 207, 298, 415, 592, 833, 1163, 1615, 2247, 3088, 4259, 5845, 7977, 10862, 14752, 19969, 26941, 36310, 48725, 65279, 87228, 116274, 154660, 205305, 271879, 359400, 474157, 624257, 820450, 1076357, 1409598
Offset: 0
The a(0) = 1 through a(8) = 21 compositions:
() (1) (2) (3) (4) (5) (6) (7) (8)
(12) (13) (14) (15) (16) (17)
(21) (31) (23) (24) (25) (26)
(32) (42) (34) (35)
(41) (51) (43) (53)
(212) (123) (52) (62)
(213) (61) (71)
(231) (124) (125)
(312) (214) (134)
(321) (241) (215)
(313) (251)
(412) (314)
(421) (323)
(341)
(413)
(431)
(512)
(521)
(2123)
(2312)
(3212)
The weak version appears to be
A189076.
Ranked by positions of strictly decreasing rows in
A374683.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have
A000041.
- For leaders of anti-runs we have
A374680.
- For leaders of weakly increasing runs we have
A188920.
- For leaders of weakly decreasing runs we have
A374746.
- For leaders of strictly decreasing runs we have
A374763.
Types of run-leaders (instead of strictly decreasing):
- For strictly increasing leaders we have
A374688.
- For weakly increasing leaders we have
A374690.
- For weakly decreasing leaders we have
A374697.
A335456 counts patterns matched by compositions.
A374700 counts compositions by sum of leaders of strictly increasing runs.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,Less]&]],{n,0,15}]
-
C_x(N) = {my(x='x+O('x^N), h=prod(i=1,N, 1+(x^i)*prod(j=i+1,N, 1+x^j))); Vec(h)}
C_x(50) \\ John Tyler Rascoe, Jul 29 2024
A374688
Number of integer compositions of n whose leaders of strictly increasing runs are themselves strictly increasing.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 5, 7, 11, 16, 21, 31, 45, 63, 87, 122, 170, 238, 328, 449, 616, 844, 1151, 1565, 2121, 2861, 3855, 5183, 6953, 9299, 12407, 16513, 21935, 29078, 38468, 50793, 66935, 88037, 115577, 151473, 198175, 258852, 337560, 439507, 571355, 741631
Offset: 0
The a(0) = 1 through a(9) = 16 compositions:
() (1) (2) (3) (4) (5) (6) (7) (8) (9)
(12) (13) (14) (15) (16) (17) (18)
(23) (24) (25) (26) (27)
(122) (123) (34) (35) (36)
(132) (124) (125) (45)
(133) (134) (126)
(142) (143) (135)
(152) (144)
(233) (153)
(1223) (162)
(1232) (234)
(243)
(1224)
(1233)
(1242)
(1323)
Ranked by positions of strictly increasing rows in
A374683 (sums
A374684).
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have
A000041.
- For leaders of anti-runs we have
A374679.
- For leaders of weakly increasing runs we have
A374634.
- For leaders of strictly decreasing runs we have
A374762.
Types of run-leaders (instead of strictly increasing):
- For strictly decreasing leaders we have
A374689.
- For weakly increasing leaders we have
A374690.
- For weakly decreasing leaders we have
A374697.
A374700 counts compositions by sum of leaders of strictly increasing runs.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,Less]&]],{n,0,15}]
A374697
Number of integer compositions of n whose leaders of strictly increasing runs are weakly decreasing.
Original entry on oeis.org
1, 1, 2, 4, 8, 15, 29, 55, 103, 193, 360, 669, 1239, 2292, 4229, 7794, 14345, 26375, 48452, 88946, 163187, 299250, 548543, 1005172, 1841418, 3372603, 6175853, 11307358, 20699979, 37890704, 69351776, 126926194, 232283912, 425075191, 777848212, 1423342837, 2604427561
Offset: 0
The composition (1,2,1,3,2,3) has strictly increasing runs ((1,2),(1,3),(2,3)), with leaders (1,1,2), so is not counted under a(12).
The a(0) = 1 through a(5) = 15 compositions:
() (1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(121) (113)
(211) (131)
(1111) (212)
(221)
(311)
(1112)
(1121)
(1211)
(2111)
(11111)
Ranked by positions of weakly decreasing rows in
A374683.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have
A000041.
- For leaders of anti-runs we have
A374682.
- For leaders of weakly increasing runs we have
A189076, complement
A374636.
- For leaders of weakly decreasing runs we have
A374747.
- For leaders of strictly decreasing runs we have
A374765.
Types of run-leaders (instead of weakly decreasing):
- For weakly increasing leaders we have
A374690.
- For strictly increasing leaders we have
A374688.
- For strictly decreasing leaders we have
A374689.
A335456 counts patterns matched by compositions.
A374700 counts compositions by sum of leaders of strictly increasing runs.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],GreaterEqual@@First/@Split[#,Less]&]],{n,0,15}]
-
seq(n) = Vec(1/prod(k=1, n, 1 - x^k*prod(j=k+1, n-k, 1 + x^j, 1 + O(x^(n-k+1))))) \\ Andrew Howroyd, Jul 31 2024
A374678
Number of integer compositions of n whose leaders of maximal anti-runs are not distinct.
Original entry on oeis.org
0, 0, 1, 1, 3, 7, 15, 32, 70, 144, 311, 653, 1354, 2820, 5850, 12054, 24810, 50923, 104206, 212841, 433919, 882930, 1793810, 3639248, 7373539, 14921986
Offset: 0
The anti-runs of y = (1,1,2,2) are ((1),(1,2),(2)) with leaders (1,1,2) so y is counted under a(6).
The a(0) = 0 through a(6) = 15 compositions:
. . (11) (111) (22) (113) (33)
(112) (221) (114)
(1111) (1112) (222)
(1121) (1113)
(1211) (1122)
(2111) (1131)
(11111) (1311)
(2211)
(3111)
(11112)
(11121)
(11211)
(12111)
(21111)
(111111)
Compositions of this type are ranked by
A374639.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],!UnsameQ@@First/@Split[#,UnsameQ]&]],{n,0,15}]
A374680
Number of integer compositions of n whose leaders of anti-runs are strictly decreasing.
Original entry on oeis.org
1, 1, 1, 3, 5, 8, 16, 31, 52, 98, 179, 323, 590, 1078, 1945, 3531, 6421, 11621, 21041, 38116, 68904, 124562, 225138, 406513, 733710, 1323803
Offset: 0
The a(0) = 1 through a(6) = 16 compositions:
() (1) (2) (3) (4) (5) (6)
(12) (13) (14) (15)
(21) (31) (23) (24)
(121) (32) (42)
(211) (41) (51)
(131) (123)
(212) (132)
(311) (141)
(213)
(231)
(312)
(321)
(411)
(1212)
(2112)
(2121)
For distinct but not necessarily decreasing leaders we have
A374518.
For partitions instead of compositions we have
A375133.
Other types of runs (instead of anti-):
- For leaders of identical runs we have
A000041.
- For leaders of weakly increasing runs we have
A188920.
- For leaders of weakly decreasing runs we have
A374746.
- For leaders of strictly decreasing runs we have
A374763.
- For leaders of strictly increasing runs we have
A374689.
Other types of run-leaders (instead of strictly decreasing):
- For weakly increasing leaders we have
A374681.
- For strictly increasing leaders we have
A374679.
- For weakly decreasing leaders we have
A374682.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,UnsameQ]&]],{n,0,15}]
A374681
Number of integer compositions of n whose leaders of anti-runs are weakly increasing.
Original entry on oeis.org
1, 1, 2, 4, 7, 14, 27, 50, 96, 185, 353, 672, 1289, 2466, 4722, 9052, 17342, 33244, 63767, 122325, 234727, 450553, 864975, 1660951, 3190089, 6128033
Offset: 0
The a(0) = 1 through a(5) = 14 compositions:
() (1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(121) (113)
(1111) (122)
(131)
(212)
(221)
(1112)
(1121)
(1211)
(11111)
For partitions instead of compositions we have
A034296.
Other types of runs (instead of anti-):
- For leaders of constant runs we have
A000041.
- For leaders of weakly decreasing runs we have
A188900.
- For leaders of weakly increasing runs we have
A374635.
- For leaders of strictly increasing runs we have
A374690.
- For leaders of strictly decreasing runs we have
A374764.
Other types of run-leaders (instead of weakly increasing):
- For strictly increasing leaders we have
A374679.
- For weakly decreasing leaders we have
A374682.
- For strictly decreasing leaders we have
A374680.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],LessEqual@@First/@Split[#,UnsameQ]&]],{n,0,15}]
A374682
Number of integer compositions of n whose leaders of anti-runs are weakly decreasing.
Original entry on oeis.org
1, 1, 2, 4, 8, 15, 30, 59, 114, 222, 434, 844, 1641, 3189, 6192, 12020, 23320, 45213, 87624, 169744, 328684, 636221, 1231067, 2381269, 4604713, 8901664
Offset: 0
The a(0) = 1 through a(5) = 15 compositions:
() (1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(121) (113)
(211) (131)
(1111) (212)
(221)
(311)
(1112)
(1121)
(1211)
(2111)
(11111)
For reversed partitions instead of compositions we have
A115029.
Other types of runs (instead of anti-):
- For leaders of identical runs we have
A000041.
- For leaders of weakly increasing runs we have
A189076, complement
A374636.
- For leaders of weakly decreasing runs we have
A374747.
- For leaders of strictly decreasing runs we have
A374765.
- For leaders of strictly increasing runs we have
A374697.
Other types of run-leaders (instead of weakly decreasing):
- For weakly increasing leaders we have
A374681.
- For strictly increasing leaders we have
A374679.
- For strictly decreasing leaders we have
A374680.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
-
Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],GreaterEqual@@First/@Split[#,UnsameQ]&]],{n,0,15}]
Comments