cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A375125 Strictly increasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 1, 7, 8, 9, 10, 11, 1, 3, 3, 15, 16, 17, 18, 19, 2, 21, 5, 23, 1, 3, 6, 7, 3, 7, 7, 31, 32, 33, 34, 35, 36, 37, 9, 39, 2, 5, 42, 43, 5, 11, 11, 47, 1, 3, 6, 7, 1, 13, 3, 15, 3, 7, 14, 15, 7, 15, 15, 63, 64, 65, 66, 67, 68, 69, 17, 71, 4, 73
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of strictly increasing runs in the n-th composition in standard order.
The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with strictly increasing runs ((1,3),(2),(1,2),(1)), with leaders (1,2,1,1). This is the 27th composition in standard order, so a(813) = 27.
		

Crossrefs

Positions of elements of A233564 are A374698, counted by A374687.
Positions of elements of A272919 are A374685, counted by A374686.
Ranks of rows of A374683.
The weak version is A375123.
The weak opposite version is A375124.
The opposite version is A375126.
Other transformations: A375127, A373948.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transformation is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],Less]],{n,0,100}]

Formula

A000120(a(n)) = A124768(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374684(n).

A375126 Strictly decreasing run-leader transformation for standard compositions.

Original entry on oeis.org

0, 1, 2, 3, 4, 2, 6, 7, 8, 4, 10, 5, 12, 6, 14, 15, 16, 8, 4, 9, 20, 10, 10, 11, 24, 12, 26, 13, 28, 14, 30, 31, 32, 16, 8, 17, 36, 4, 18, 19, 40, 20, 42, 21, 20, 10, 22, 23, 48, 24, 12, 25, 52, 26, 26, 27, 56, 28, 58, 29, 60, 30, 62, 63, 64, 32, 16, 33, 8, 8
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2024

Keywords

Comments

The a(n)-th composition in standard order lists the leaders of strictly decreasing runs in the n-th composition in standard order.
The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Does this sequence contain all nonnegative integers?

Examples

			The 813th composition in standard order is (1,3,2,1,2,1), with strictly decreasing runs ((1),(3,2,1),(2,1)), with leaders (1,3,2). This is the 50th composition in standard order, so a(813) = 50.
		

Crossrefs

Positions of elements of A233564 are A374767, counted by A374761.
Positions of elements of A272919 are A374759, counted by A374760.
Ranks of rows of A374757 (row-sums A374758).
The weak opposite version is A375123.
The weak version is A375124.
The opposite version is A375125.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) = A070939(n).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Run-length transform is A333627.
- Run-compression transform is A373948, sum A373953, excess A373954.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Run-sum transformation is A353847.
Six types of runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n],Greater]],{n,0,100}]

Formula

A000120(a(n)) = A124769(n).
A065120(a(n)) = A065120(n).
A070939(a(n)) = A374758(n).

A374688 Number of integer compositions of n whose leaders of strictly increasing runs are themselves strictly increasing.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 7, 11, 16, 21, 31, 45, 63, 87, 122, 170, 238, 328, 449, 616, 844, 1151, 1565, 2121, 2861, 3855, 5183, 6953, 9299, 12407, 16513, 21935, 29078, 38468, 50793, 66935, 88037, 115577, 151473, 198175, 258852, 337560, 439507, 571355, 741631
Offset: 0

Views

Author

Gus Wiseman, Jul 27 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the minima are strictly decreasing.

Examples

			The a(0) = 1 through a(9) = 16 compositions:
  ()  (1)  (2)  (3)   (4)   (5)    (6)    (7)    (8)     (9)
                (12)  (13)  (14)   (15)   (16)   (17)    (18)
                            (23)   (24)   (25)   (26)    (27)
                            (122)  (123)  (34)   (35)    (36)
                                   (132)  (124)  (125)   (45)
                                          (133)  (134)   (126)
                                          (142)  (143)   (135)
                                                 (152)   (144)
                                                 (233)   (153)
                                                 (1223)  (162)
                                                 (1232)  (234)
                                                         (243)
                                                         (1224)
                                                         (1233)
                                                         (1242)
                                                         (1323)
		

Crossrefs

The weak version is A374635.
Ranked by positions of strictly increasing rows in A374683 (sums A374684).
The opposite version is A374763.
Types of runs (instead of strictly increasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374679.
- For leaders of weakly increasing runs we have A374634.
- For leaders of strictly decreasing runs we have A374762.
Types of run-leaders (instead of strictly increasing):
- For identical leaders we have A374686, ranks A374685.
- For distinct leaders we have A374687, ranks A374698.
- For strictly decreasing leaders we have A374689.
- For weakly increasing leaders we have A374690.
- For weakly decreasing leaders we have A374697.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,Less]&]],{n,0,15}]

Extensions

a(26) and beyond from Christian Sievers, Aug 08 2024

A374684 Sum of leaders of strictly increasing runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 1, 3, 4, 4, 4, 4, 1, 2, 2, 4, 5, 5, 5, 5, 2, 5, 3, 5, 1, 2, 3, 3, 2, 3, 3, 5, 6, 6, 6, 6, 6, 6, 4, 6, 2, 3, 6, 6, 3, 4, 4, 6, 1, 2, 3, 3, 1, 4, 2, 4, 2, 3, 4, 4, 3, 4, 4, 6, 7, 7, 7, 7, 7, 7, 5, 7, 3, 7, 7, 7, 4, 5, 5, 7, 2, 3, 4, 4, 4, 7, 5
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2024

Keywords

Comments

The leaders of strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.

Examples

			The maximal strictly increasing subsequences of the 1234567th composition in standard order are ((3),(2),(1,2),(2),(1,2,5),(1),(1),(1)) with leaders (3,2,1,2,1,1,1,1), so a(1234567) = 12.
		

Crossrefs

The weak version is A374630.
Row-sums of A374683.
The opposite version is A374758.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1) (or sometimes A070939).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Number of max runs: A124765, A124766, A124767, A124768, A124769, A333381.
- Run-length transform is A333627.
- Run-compression transform is A373948.
- Ranks of contiguous compositions are A374249, counted by A274174.
- Ranks of non-contiguous compositions are A374253, counted by A335548.
Cf. A374251 (sums A373953), A374515 (sums A374516), A374740 (sums A374741).

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[First/@Split[stc[n],Less]],{n,0,100}]

A374746 Number of integer compositions of n whose leaders of weakly decreasing runs are strictly decreasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 18, 31, 51, 86, 143, 241, 397, 657, 1082, 1771, 2889, 4697, 7605, 12269, 19720, 31580, 50412, 80205, 127208, 201149, 317171, 498717, 782076, 1223230, 1908381, 2969950, 4610949, 7141972, 11037276, 17019617, 26188490, 40213388, 61624824
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2024

Keywords

Comments

The weakly decreasing run-leaders of a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.

Examples

			The a(0) = 1 through a(7) = 18 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)
           (11)  (21)   (22)    (32)     (33)      (43)
                 (111)  (31)    (41)     (42)      (52)
                        (211)   (221)    (51)      (61)
                        (1111)  (311)    (222)     (322)
                                (2111)   (312)     (331)
                                (11111)  (321)     (412)
                                         (411)     (421)
                                         (2211)    (511)
                                         (3111)    (2221)
                                         (21111)   (3112)
                                         (111111)  (3121)
                                                   (3211)
                                                   (4111)
                                                   (22111)
                                                   (31111)
                                                   (211111)
                                                   (1111111)
		

Crossrefs

Ranked by positions of strictly decreasing rows in A374740, opp. A374629.
Types of runs (instead of weakly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we have A188920.
- For leaders of anti-runs we have A374680.
- For leaders of strictly increasing runs we have A374689.
- For leaders of strictly decreasing runs we have A374763.
Types of run-leaders (instead of strictly decreasing):
- For weakly increasing leaders we appear to have A188900.
- For identical leaders we have A374742.
- For distinct leaders we have A374743, ranks A374701.
- For strictly increasing leaders we have opposite A374634.
- For weakly decreasing leaders we have A374747.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374748 counts compositions by sum of leaders of weakly decreasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Greater@@First/@Split[#,GreaterEqual]&]],{n,0,15}]
  • PARI
    seq(n)={my(A=O(x*x^n), p=1+A, q=p, r=p); for(k=1, n\2, r += x^k*q/(1-x^k); p /= 1 - x^k; q *= (1 - x^k/(1-x^k) + x^k*p)/(1-x^k) );  Vec(r + x^(n\2+1)*q/(1-x))} \\ Andrew Howroyd, Dec 30 2024

Formula

G.f.: Sum_{k>=0} x^k*Q(k,x)/(1 - x^k) where Q(0,x) = 1 and Q(k,x) = Q(k-1,x) * (1 - x^k/(1 - x^k) + x^k*Product_{j=1..k} (1 - x^j))/(1 - x^k) for k > 0. - Andrew Howroyd, Dec 30 2024

Extensions

a(24)-a(39) from Alois P. Heinz, Jul 26 2024

A374747 Number of integer compositions of n whose leaders of weakly decreasing runs are themselves weakly decreasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 14, 24, 43, 76, 136, 242, 431, 764, 1353, 2387, 4202, 7376, 12918, 22567, 39338, 68421, 118765, 205743, 355756, 614038, 1058023, 1820029, 3125916, 5360659, 9179700, 15697559, 26807303, 45720739, 77881393, 132505599, 225182047, 382252310, 648187055
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2024

Keywords

Comments

The weakly decreasing run-leaders of a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.

Examples

			The composition y = (3,2,1,2,2,1,2,5,1,1,1) has weakly decreasing runs ((3,2,1),(2,2,1),(2),(5,1,1,1)), with leaders (3,2,2,5), which are not weakly decreasing, so y is not counted under a(21).
The a(0) = 1 through a(6) = 14 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (21)   (22)    (32)     (33)
                 (111)  (31)    (41)     (42)
                        (211)   (212)    (51)
                        (1111)  (221)    (222)
                                (311)    (312)
                                (2111)   (321)
                                (11111)  (411)
                                         (2112)
                                         (2121)
                                         (2211)
                                         (3111)
                                         (21111)
                                         (111111)
		

Crossrefs

Ranked by positions of weakly decreasing rows in A374740, opposite A374629.
Types of runs (instead of weakly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we appear to have A189076.
- For leaders of anti-runs we have A374682.
- For leaders of strictly increasing runs we have A374697.
- For leaders of strictly decreasing runs we have A374765.
Types of run-leaders (instead of weakly decreasing):
- For weakly increasing leaders we appear to have A188900.
- For identical leaders we have A374742, ranks A374744.
- For distinct leaders we have A374743, ranks A374701.
- For strictly increasing leaders we have opposite A374634.
- For strictly decreasing leaders we have A374746.
A011782 counts compositions.
A124765 counts weakly decreasing runs in standard compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374748 counts compositions by sum of leaders of weakly decreasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],GreaterEqual@@First/@Split[#,GreaterEqual]&]],{n,0,15}]
  • PARI
    dfs(m, r, u) = 1 + sum(s=r+1, min(m, u), x^s/(1-x^s) + sum(t=1, min(s-1, m-s), dfs(m-s-t, t, s)*x^(s+t)/prod(i=t, s, 1-x^i)));
    lista(nn) = Vec(dfs(nn, 0, nn) + O(x^(1+nn))); \\ Jinyuan Wang, Feb 14 2025

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A374762 Number of integer compositions of n whose leaders of strictly decreasing runs are strictly increasing.

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 11, 18, 27, 41, 64, 98, 151, 229, 339, 504, 746, 1097, 1618, 2372, 3451, 5009, 7233, 10394, 14905, 21316, 30396, 43246, 61369, 86830, 122529, 172457, 242092, 339062, 473850, 660829, 919822, 1277935, 1772174, 2453151, 3389762, 4675660, 6438248
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the maxima are strictly decreasing. The weakly decreasing version is A374764.

Examples

			The a(0) = 1 through a(7) = 18 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)    (7)
                (12)  (13)   (14)   (15)   (16)
                (21)  (31)   (23)   (24)   (25)
                      (121)  (32)   (42)   (34)
                             (41)   (51)   (43)
                             (131)  (123)  (52)
                                    (132)  (61)
                                    (141)  (124)
                                    (213)  (142)
                                    (231)  (151)
                                    (321)  (214)
                                           (232)
                                           (241)
                                           (421)
                                           (1213)
                                           (1231)
                                           (1321)
                                           (2131)
		

Crossrefs

For partitions instead of compositions we have A000009.
The weak version appears to be A188900.
The opposite version is A374689.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we have A374634.
- For leaders of anti-runs we have A374679.
Other types of run-leaders (instead of strictly increasing):
- For identical leaders we have A374760, ranks A374759.
- For distinct leaders we have A374761, ranks A374767.
- For strictly decreasing leaders we have A374763.
- For weakly increasing leaders we have A374764.
- For weakly decreasing leaders we have A374765.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Less@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(prod(k=1, n, 1 + x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))) \\ Andrew Howroyd, Jul 31 2024

Formula

G.f.: Product_{k>=1} (1 + x^k*Product_{j=1..k-1} (1 + x^j)). - Andrew Howroyd, Jul 31 2024

Extensions

a(24) onwards from Andrew Howroyd, Jul 31 2024

A375137 Numbers k such that the k-th composition in standard order (row k of A066099) matches the dashed pattern 1-32.

Original entry on oeis.org

50, 98, 101, 114, 178, 194, 196, 197, 202, 203, 210, 226, 229, 242, 306, 324, 354, 357, 370, 386, 388, 389, 393, 394, 395, 402, 404, 405, 406, 407, 418, 421, 434, 450, 452, 453, 458, 459, 466, 482, 485, 498, 562, 610, 613, 626, 644, 649, 690, 706, 708, 709
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2024

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
These are also numbers k such that the maximal weakly increasing runs in the k-th composition in standard order do not have weakly decreasing leaders, where the leaders of weakly increasing runs in a sequence are obtained by splitting it into maximal weakly increasing subsequences and taking the first term of each.
The reverse version (A375138) ranks compositions matching the dashed pattern 23-1.

Examples

			Composition 102 is (1,3,1,2), which matches 1-3-2 but not 1-32.
Composition 210 is (1,2,3,2), which matches 1-32 but not 132.
Composition 358 is (2,1,3,1,2), which matches 2-3-1 and 1-3-2 but not 23-1 or 1-32.
The terms together with corresponding compositions begin:
   50: (1,3,2)
   98: (1,4,2)
  101: (1,3,2,1)
  114: (1,1,3,2)
  178: (2,1,3,2)
  194: (1,5,2)
  196: (1,4,3)
  197: (1,4,2,1)
  202: (1,3,2,2)
  203: (1,3,2,1,1)
  210: (1,2,3,2)
  226: (1,1,4,2)
  229: (1,1,3,2,1)
  242: (1,1,1,3,2)
		

Crossrefs

The complement is too dense, but counted by A189076.
The non-dashed version is A335480, reverse A335482.
For leaders of identical runs we have A335485, reverse A335486.
For identical leaders we have A374633, counted by A374631.
Compositions of this type are counted by A374636.
For distinct leaders we have A374768, counted by A374632.
The reverse version is A375138, counted by A374636.
For leaders of strictly increasing runs we have A375139, counted by A375135.
Matching 1-21 also gives A375295, counted by A375140 (complement A188920).
A003242 counts anti-runs, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Leader is A065120.
- Parts are listed by A066099, reverse A228351.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Run-length transform is A333627, sum A070939.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,z_,y_,_}/;x
    				

A376263 Number of strict integer compositions of n whose leaders of increasing runs are increasing.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 6, 8, 11, 18, 21, 30, 38, 52, 77, 96, 126, 167, 217, 278, 402, 488, 647, 822, 1073, 1340, 1747, 2324, 2890, 3695, 4690, 5924, 7469, 9407, 11718, 15405, 18794, 23777, 29507, 37188, 45720, 57404, 70358, 87596, 110672, 135329, 167018, 206761, 254200, 311920
Offset: 0

Views

Author

Gus Wiseman, Sep 18 2024

Keywords

Comments

The leaders of increasing runs of a sequence are obtained by splitting it into maximal increasing subsequences and taking the first term of each.

Examples

			The a(1) = 1 through a(9) = 11 compositions:
 (1) (2) (3)   (4)   (5)   (6)     (7)     (8)     (9)
         (1,2) (1,3) (1,4) (1,5)   (1,6)   (1,7)   (1,8)
                     (2,3) (2,4)   (2,5)   (2,6)   (2,7)
                           (1,2,3) (3,4)   (3,5)   (3,6)
                           (1,3,2) (1,2,4) (1,2,5) (4,5)
                                   (1,4,2) (1,3,4) (1,2,6)
                                           (1,4,3) (1,3,5)
                                           (1,5,2) (1,5,3)
                                                   (1,6,2)
                                                   (2,3,4)
                                                   (2,4,3)
		

Crossrefs

For less-greater or greater-less we have A294617.
This is a strict case of A374688, weak version A374635.
The strict less-greater version is A374689, weak version A189076.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions, strict A032020.
A238130, A238279, A333755 count compositions by number of runs.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@#&&Less@@First/@Split[#,Less]&]],{n,0,15}]
  • PARI
    \\ here Q(n) gives n-th row of A008289.
    Q(n)={Vecrev(polcoef(prod(k=1, n, 1 + y*x^k, 1 + O(x*x^n)), n)/y)}
    a(n)={if(n==0, 1, my(r=Q(n), s=Vec(serlaplace(exp(exp(x+O(x^#r))- 1)))); sum(k=1, #r, r[k]*s[k]))} \\ Andrew Howroyd, Sep 18 2024

Formula

a(n) = Sum_{k>=1} A008289(n,k)*A000110(k-1) for n > 0. - Andrew Howroyd, Sep 18 2024

Extensions

a(26) onwards from Andrew Howroyd, Sep 18 2024
Previous Showing 21-29 of 29 results.