cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A375529 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, Sum_{k = 1..n} prime(k)/a(k) < 1.

Original entry on oeis.org

3, 10, 151, 31711, 1580159131, 2950885219102973491, 11387023138265143513338462726052139311, 144918919004489964473283047921945994420315076260338720025368711042369934871
Offset: 1

Views

Author

Rémy Sigrist and N. J. A. Sloane, Sep 04 2024

Keywords

Crossrefs

Programs

  • PARI
    B(u)={my(v=vector(#u)); my(r=1); for(i=1, #u, my(t=floor(u[i]/r)+1); v[i]=t; r-=u[i]/t); v}
    a(n)={B(vector(n,k,prime(k)))[n]} \\ Andrew Howroyd, Sep 04 2024

Formula

a(n) = prime(n)*A375530(n-1) + 1.

A376051 a(n) is the denominator of the sum S(n) defined in A376050.

Original entry on oeis.org

2, 6, 15, 105, 1890, 1787940, 1598366509740, 170318366632160334167580, 4144049430320998104357181695998976956266032780, 903849772681252048573050443706467978048458261112444760582668531605732820714345840478376380
Offset: 1

Views

Author

N. J. A. Sloane, Sep 13 2024

Keywords

Examples

			The first few values of S(n) are 1/2, 5/6, 14/15, 103/105, 1889/1890, 1787939/1787940, 1598366509739/1598366509740, ... Note S(4) is exceptional, in that the numerator and denominator differ by 2 instead of 1.
		

Crossrefs

A376052 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} 1/((2*k+1)*a(k)) < 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 6, 31, 1527, 3509710, 19634198420529, 670572652324570519822017836, 444183929825540926086588009989665668909119960123355423
Offset: 1

Views

Author

N. J. A. Sloane, Sep 14 2024

Keywords

Crossrefs

A376056 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} (2*k-1)/a(k) < 1.

Original entry on oeis.org

2, 7, 71, 6959, 62255215, 4736981006316791, 26518805245879857416837904442871, 811438882694890436523185183518581584358651922339197834228784351
Offset: 1

Views

Author

N. J. A. Sloane, Sep 14 2024

Keywords

Comments

Theorem: Given any sequence of nonnegative integers b(1), b(2), b(3), ..., let a(1), a(2), a(3), ... be the lexicographically earliest sequence of positive integers such that for all n >= 1, S(n) = Sum_{k = 1..n} b(k)/a(k) < 1. Then S(n) = (e(n)-1)/e(n) for positive integers e(1), e(2), e(3), ....
For the present sequence the e(k) are given in A376057.

Crossrefs

Programs

  • Maple
    # Given a sequence b(1), b(2), b(3), ... of nonnegative real numbers, this program computes the first M terms of the lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... with the property that for any n > 0, S(n) = Sum_{k = 1..n} b(k)/a(k) < 1.
    # For the present sequence we set b(k) = 2*k - 1.
    b := Array(0..100,-1); a := Array(0..100,-1); S := Array(0..100,-1); d := Array(0..100,-1);
    for k from 1 to 100 do b[k]:=2*k-1; od:
    M:=8;
    S[0] := 0; d[0] := 1;
    for n from 1 to M do
    a[n] := floor(b[n]/d[n-1])+1;
    S[n] := S[n-1] + b[n]/a[n];
    d[n] := 1 - S[n];
    od:
    La:=[seq(a[n],n=1..M)]; # the present sequence
    Ls:=[seq(S[n],n=1..M)]; # the sums S(n)
    Lsn:=[seq(numer(S[n]),n=1..M)];
    Lsd:=[seq(denom(S[n]),n=1..M)]; # A376057
    Lsd-Lsn; # As a check, by the above theorem, this should (and does) produce the all-1's sequence
    # Some small changes to the program are needed if the starting sequence {b(n)} has offset 0, as for example in the case of the Fibonacci or Catalan numbers (see A376058-A376061).

Formula

a(n+1) = (2*n+1)*A376057(n) + 1.

A376057 a(n) is the denominator of the sum S(n) defined in A376056.

Original entry on oeis.org

1, 2, 14, 994, 6917246, 430634636937890, 2039908095836912108987531110990, 54095925512992695768212345567905438957243461489279855615252290
Offset: 0

Views

Author

N. J. A. Sloane, Sep 14 2024

Keywords

Examples

			The first few values of S(n) are 0/1, 1/2, 13/14, 993/994, 6917245/6917246, 430634636937889/430634636937890, ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n=0, 1, ((2*n-1)*a(n-1)+1)*a(n-1)) end:
    seq(a(n), n=0..7);  # Alois P. Heinz, Oct 18 2024
  • Mathematica
    RecurrenceTable[{a[n+1] == (2*n+1)*a[n]^2 + a[n], a[0] == 1}, a, {n, 0, 7}] (* Amiram Eldar, Sep 15 2024 *)

Formula

a(n+1) = (2*n+1)*a(n)^2 + a(n), with a(0) = 1.

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 18 2024

A376058 Lexicographically earliest sequence of positive integers a(0), a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 0..n-1} Fibonacci(k)/a(k) < 1.

Original entry on oeis.org

1, 2, 3, 13, 235, 91651, 13439702641, 293516611480726842391, 139168617347514378219313352146196398680331, 31357558945249615124049146384908197437748687514518843725326663348294514909787525421
Offset: 0

Views

Author

N. J. A. Sloane, Sep 14 2024

Keywords

Crossrefs

Formula

a(n+1) = Fibonacci(n+1)*A376059(n) + 1.

A376061 a(n) is the denominator of the sum S(n) defined in A376060.

Original entry on oeis.org

2, 6, 78, 30498, 13021822554, 7121850230383271305026, 6695139092929353602428277531338786356808914258
Offset: 0

Views

Author

N. J. A. Sloane, Sep 14 2024

Keywords

Examples

			The first few values of S(n) are 1/2, 5/6, 77/78, 30497/30498, 13021822553/13021822554, ...
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n+1] == CatalanNumber[n+1]*a[n]^2 + a[n], a[0] == 2}, a, {n, 0, 6}] (* Amiram Eldar, Sep 15 2024 *)

Formula

a(n+1) = Catalan(n+1)*a(n)^2 + a(n), with a(0) = 2.

A375530 a(n) is the denominator of Sum_{k = 1..n} prime(k) / A375529(k).

Original entry on oeis.org

1, 3, 30, 4530, 143650830, 226991170700228730, 669824890486184912549321336826596430, 7627311526552103393330686732733999706332372434754669475019405844335259730
Offset: 0

Views

Author

Rémy Sigrist and N. J. A. Sloane, Sep 04 2024

Keywords

Examples

			The first few fractions Sum_{k = 1..n} prime(k) / A375529(k) are 0/1, 2/3, 29/30, 4529/4530, 143650829/143650830, 226991170700228729/226991170700228730, ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          ithprime(n)*a(n-1)^2+a(n-1))
        end:
    seq(a(n), n=0..7);  # Alois P. Heinz, Oct 21 2024

Formula

a(n) = prime(n)*a(n-1)^2 + a(n-1), with a(0) = 1.

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 21 2024

A376050 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} 1/((2*k-1)*a(k)) < 1.

Original entry on oeis.org

2, 1, 2, 3, 6, 172, 137534, 106557767317, 10018727448950607892211, 218107864753736742334588510315735629277159621, 43040465365773907074907163986022284668974202910116417170603263409796800986397420975160781
Offset: 1

Views

Author

N. J. A. Sloane, Sep 13 2024

Keywords

Comments

It appears that S(n) = (e(n)-1)/e(n) for all n != 4, where e(n) = A376051(n). Exceptionally, S(4) = (e(4)-2)/e(4).
a(15) has 1420 decimal digits, too large for a b-file. - Robert Israel, Oct 13 2024

References

  • Rémy Sigrist and N. J. A. Sloane, Dampening Down a Divergent Series, Manuscript in preparation, September 2024.

Crossrefs

Programs

  • Maple
    S:= 1:R:= NULL:
    for i from 1 to 11 do
      r:= ceil(1/((2*i-1)*S));
      if r *(2*i-1) = 1/S then r:= r+1 fi;
      R:= R,r;
      S:= S - 1/((2*i-1)*r)
    od:
    R; # Robert Israel, Oct 13 2024

A376053 Numerator of the sum S(n) defined in A376052.

Original entry on oeis.org

1, 8, 71, 248, 3043, 43024, 89051, 764441, 451021514, 25508567769, 411827311870583771, 525058386770138717020639964821, 528134692562568161116953143877712480332943632586669596859, 2267693117789905604207315326366543773113615946806750184592188584359364943382168221068055512231683584106110223751
Offset: 1

Views

Author

N. J. A. Sloane, Sep 14 2024

Keywords

Examples

			The initial values of S(n) are 1/3, 8/15, 71/105, 248/315, 3043/3465, 43024/45045, 89051/90090, ...
		

Crossrefs

Previous Showing 11-20 of 27 results. Next