A376049
a(n) is the denominator of the sum S(n) defined in A376048.
Original entry on oeis.org
1, 4, 20, 1620, 2626020, 34479907828020, 10699776394458828344981911620, 228970429782836729250563232145698649718622958323963960420, 314564746289621790478499809054644383073494124885364231904506529162346525698245870188461228508418377184391923418820
Offset: 0
The first few values of S(n) are 0/1, 3/4, 19/20, 1619/1620, 2626019/2626020, 34479907828019/34479907828020, ...
A376062
Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} b(k)/a(k) < 1, where {b(k)} is the sequence {7/6, 5/4, 5/4, 5/4, ...}.
Original entry on oeis.org
2, 4, 13, 157, 24493, 599882557, 359859081592975693, 129498558604939936868397356895854557, 16769876680757063368089314196389622249367851612542961252860614401811693
Offset: 1
-
Join[{2}, RecurrenceTable[{a[n+1] == a[n]^2 - a[n] + 1, a[2] == 4}, a, {n, 2, 9}]] (* Amiram Eldar, Sep 15 2024 *)
A376051
a(n) is the denominator of the sum S(n) defined in A376050.
Original entry on oeis.org
2, 6, 15, 105, 1890, 1787940, 1598366509740, 170318366632160334167580, 4144049430320998104357181695998976956266032780, 903849772681252048573050443706467978048458261112444760582668531605732820714345840478376380
Offset: 1
The first few values of S(n) are 1/2, 5/6, 14/15, 103/105, 1889/1890, 1787939/1787940, 1598366509739/1598366509740, ... Note S(4) is exceptional, in that the numerator and denominator differ by 2 instead of 1.
A376052
Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} 1/((2*k+1)*a(k)) < 1.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 6, 31, 1527, 3509710, 19634198420529, 670572652324570519822017836, 444183929825540926086588009989665668909119960123355423
Offset: 1
A376056
Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} (2*k-1)/a(k) < 1.
Original entry on oeis.org
2, 7, 71, 6959, 62255215, 4736981006316791, 26518805245879857416837904442871, 811438882694890436523185183518581584358651922339197834228784351
Offset: 1
-
# Given a sequence b(1), b(2), b(3), ... of nonnegative real numbers, this program computes the first M terms of the lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... with the property that for any n > 0, S(n) = Sum_{k = 1..n} b(k)/a(k) < 1.
# For the present sequence we set b(k) = 2*k - 1.
b := Array(0..100,-1); a := Array(0..100,-1); S := Array(0..100,-1); d := Array(0..100,-1);
for k from 1 to 100 do b[k]:=2*k-1; od:
M:=8;
S[0] := 0; d[0] := 1;
for n from 1 to M do
a[n] := floor(b[n]/d[n-1])+1;
S[n] := S[n-1] + b[n]/a[n];
d[n] := 1 - S[n];
od:
La:=[seq(a[n],n=1..M)]; # the present sequence
Ls:=[seq(S[n],n=1..M)]; # the sums S(n)
Lsn:=[seq(numer(S[n]),n=1..M)];
Lsd:=[seq(denom(S[n]),n=1..M)]; # A376057
Lsd-Lsn; # As a check, by the above theorem, this should (and does) produce the all-1's sequence
# Some small changes to the program are needed if the starting sequence {b(n)} has offset 0, as for example in the case of the Fibonacci or Catalan numbers (see A376058-A376061).
A376057
a(n) is the denominator of the sum S(n) defined in A376056.
Original entry on oeis.org
1, 2, 14, 994, 6917246, 430634636937890, 2039908095836912108987531110990, 54095925512992695768212345567905438957243461489279855615252290
Offset: 0
The first few values of S(n) are 0/1, 1/2, 13/14, 993/994, 6917245/6917246, 430634636937889/430634636937890, ...
-
a:= proc(n) a(n):= `if`(n=0, 1, ((2*n-1)*a(n-1)+1)*a(n-1)) end:
seq(a(n), n=0..7); # Alois P. Heinz, Oct 18 2024
-
RecurrenceTable[{a[n+1] == (2*n+1)*a[n]^2 + a[n], a[0] == 1}, a, {n, 0, 7}] (* Amiram Eldar, Sep 15 2024 *)
A376058
Lexicographically earliest sequence of positive integers a(0), a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 0..n-1} Fibonacci(k)/a(k) < 1.
Original entry on oeis.org
1, 2, 3, 13, 235, 91651, 13439702641, 293516611480726842391, 139168617347514378219313352146196398680331, 31357558945249615124049146384908197437748687514518843725326663348294514909787525421
Offset: 0
A376061
a(n) is the denominator of the sum S(n) defined in A376060.
Original entry on oeis.org
2, 6, 78, 30498, 13021822554, 7121850230383271305026, 6695139092929353602428277531338786356808914258
Offset: 0
The first few values of S(n) are 1/2, 5/6, 77/78, 30497/30498, 13021822553/13021822554, ...
-
RecurrenceTable[{a[n+1] == CatalanNumber[n+1]*a[n]^2 + a[n], a[0] == 2}, a, {n, 0, 6}] (* Amiram Eldar, Sep 15 2024 *)
A376050
Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} 1/((2*k-1)*a(k)) < 1.
Original entry on oeis.org
2, 1, 2, 3, 6, 172, 137534, 106557767317, 10018727448950607892211, 218107864753736742334588510315735629277159621, 43040465365773907074907163986022284668974202910116417170603263409796800986397420975160781
Offset: 1
- Rémy Sigrist and N. J. A. Sloane, Dampening Down a Divergent Series, Manuscript in preparation, September 2024.
A376053
Numerator of the sum S(n) defined in A376052.
Original entry on oeis.org
1, 8, 71, 248, 3043, 43024, 89051, 764441, 451021514, 25508567769, 411827311870583771, 525058386770138717020639964821, 528134692562568161116953143877712480332943632586669596859, 2267693117789905604207315326366543773113615946806750184592188584359364943382168221068055512231683584106110223751
Offset: 1
The initial values of S(n) are 1/3, 8/15, 71/105, 248/315, 3043/3465, 43024/45045, 89051/90090, ...
Showing 1-10 of 16 results.
Comments