cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A377286 Numbers k such that there are no prime-powers between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Examples

			Primes 18 and 19 are 61 and 67, and the interval (62, 63, 64, 65, 66) contains the prime-power 64, so 18 is not in the sequence.
		

Crossrefs

The interval from A008864(n) to A006093(n+1) has A046933(n) elements.
For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521.
The nearest prime-power before prime(n)-1 is A065514, difference A377289.
These are the positions of 0 in A080101, or 1 in A366833.
The nearest prime-power after prime(n)+1 is A345531, difference A377281.
For at least one prime-power we have A377057.
For one instead of no prime-powers we have A377287.
For two instead of no prime-powers we have A377288.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]==0&]
  • Python
    from itertools import count, islice
    from sympy import factorint, nextprime
    def A377286_gen(): # generator of terms
        p, q, k = 2, 3, 1
        for k in count(1):
            if all(len(factorint(i))>1 for i in range(p+1,q)):
                yield k
            p, q = q, nextprime(q)
    A377286_list = list(islice(A377286_gen(),66)) # Chai Wah Wu, Oct 27 2024

A376591 Inflection and undulation points in the sequence of squarefree numbers (A005117).

Original entry on oeis.org

1, 4, 9, 11, 12, 14, 16, 18, 21, 24, 27, 32, 33, 35, 40, 43, 48, 53, 55, 56, 58, 62, 65, 68, 71, 79, 84, 87, 96, 98, 99, 101, 103, 107, 110, 113, 118, 120, 121, 123, 128, 131, 134, 137, 142, 144, 145, 147, 152, 153, 155, 158, 163, 165, 166, 172, 175, 179, 184
Offset: 1

Views

Author

Gus Wiseman, Oct 04 2024

Keywords

Comments

These are points at which the second differences (A376590) are zero.

Examples

			The squarefree numbers (A005117) are:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, ...
with first differences (A076259):
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ...
with first differences (A376590):
  0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, ...
with zeros at (A376591):
 1, 4, 9, 11, 12, 14, 16, 18, 21, 24, 27, 32, 33, 35, 40, 43, 48, 53, 55, 56, 58, ...
		

Crossrefs

The first differences were A076259, see also A375927, A376305, A376306, A376307, A376311.
These are the zeros of A376590.
The complement is A376592.
A000040 lists the prime numbers, differences A001223.
A005117 lists squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
For inflections and undulations: A064113 (prime), A376602 (composite), A376588 (non-perfect-power), A376594 (nonsquarefree), A376597 (prime-power), A376600 (non-prime-power).
For squarefree numbers: A076259 (first differences), A376590 (second differences), A376592 (nonzero curvature).

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],SquareFreeQ],2],0]

A376602 Inflection and undulation points in the sequence of composite numbers (A002808).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 14, 15, 16, 18, 20, 21, 22, 25, 27, 29, 32, 33, 34, 37, 38, 39, 41, 43, 44, 45, 48, 50, 52, 53, 54, 57, 60, 61, 62, 65, 66, 67, 68, 69, 72, 74, 76, 78, 80, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 96, 99, 100, 101, 103, 105, 106, 107, 108
Offset: 1

Views

Author

Gus Wiseman, Oct 05 2024

Keywords

Comments

These are points at which the second differences (A073445) are zero.

Examples

			The composite numbers (A002808) are:
  4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
  2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, ...
with first differences (A073445):
  0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, ...
with zeros at (A376602):
  1, 3, 5, 7, 9, 11, 14, 15, 16, 18, 20, 21, 22, 25, 27, 29, 32, 33, 34, 37, 38, ...
		

Crossrefs

Partitions into composite numbers are counted by A023895, factorizations A050370.
For prime instead of composite we have A064113.
These are the positions of zeros in A073445.
For first differences we had A073783, ones A375929, complement A065890.
For concavity in primes we have A258025/A258026, weak A333230/A333231.
For upward concavity (instead of zero) we have A376651, downward A376652.
The complement is A376603.
For composite numbers: A002808 (terms), A073783 (first differences), A073445 (second differences), A376603 (nonzero curvature), A376651 (concave-up), A376652 (concave-down).
For inflection and undulation points: A064113 (prime), A376588 (non-perfect-power), A376591 (squarefree), A376594 (nonsquarefree), A376597 (prime-power), A376600 (non-prime-power).

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],CompositeQ],2],0]

A377288 Numbers k such that there are exactly two prime-powers between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

4, 9, 30, 327, 3512
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Comments

Is this sequence finite? For this conjecture see A053706, A080101, A366833.
Any further terms are > 10^12. - Lucas A. Brown, Nov 08 2024

Examples

			Primes 9 and 10 are 23 and 29, and the interval (24, 25, 26, 27, 28) contains the prime-powers 25 and 27, so 9 is in the sequence.
		

Crossrefs

The interval from A008864(n) to A006093(n+1) has A046933 elements.
For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521.
The corresponding primes are A053706.
The nearest prime-power before prime(n)-1 is A065514, difference A377289.
The nearest prime-power after prime(n)+1 is A345531, difference A377281.
These are the positions of 2 in A080101, or 3 in A366833.
For at least one prime-power we have A377057, primes A053607.
For no prime-powers we have A377286.
For exactly one prime-power we have A377287.
For squarefree instead of prime-power see A377430, A061398, A377431, A068360.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]==2&]

Formula

prime(a(n)) = A053706(n).

A376598 Points of nonzero curvature in the sequence of prime-powers inclusive (A000961).

Original entry on oeis.org

4, 5, 7, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Gus Wiseman, Oct 05 2024

Keywords

Comments

These are points at which the second differences (A376596) are nonzero.
Inclusive means 1 is a prime-power. For the exclusive version, subtract 1 from all terms.

Examples

			The prime-powers inclusive (A000961) are:
  1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, ...
with first differences (A057820):
  1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, ...
with first differences (A376596):
  0, 0, 0, 1, -1, 0, 1, 0, 1, -2, 1, 2, -2, 0, 0, 0, -1, 4, -1, -2, 2, -2, 2, 2, ...
with nonzeros at (A376598):
  4, 5, 7, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, ...
		

Crossrefs

The first differences were A057820, see also A376340.
First differences are A376309.
These are the nonzeros of A376596 (sorted firsts A376653, exclusive A376654).
The complement is A376597.
A000961 lists prime-powers inclusive, exclusive A246655.
A001597 lists perfect-powers, complement A007916.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.
`A064113 lists positions of adjacent equal prime gaps.
For prime-powers inclusive: A057820 (first differences), A376597 (second differences), A376597 (inflections and undulations), A376653 (sorted firsts in second differences).
For points of nonzero curvature: A333214 (prime), A376603 (composite), A376589 (non-perfect-power), A376592 (squarefree), A376595 (nonsquarefree), A376601 (non-prime-power).

Programs

  • Mathematica
    Join@@Position[Sign[Differences[Select[Range[1000], #==1||PrimePowerQ[#]&],2]],1|-1]

A376653 Sorted positions of first appearances in the second differences of consecutive prime-powers inclusive (A000961).

Original entry on oeis.org

1, 4, 5, 10, 12, 18, 25, 45, 47, 48, 60, 68, 69, 71, 80, 118, 121, 178, 179, 199, 206, 207, 216, 244, 245, 304, 325, 327, 402, 466, 484, 605, 801, 880, 939, 1033, 1055, 1077, 1234, 1281, 1721, 1890, 1891, 1906, 1940, 1960, 1962, 2257, 2290, 2410, 2880, 3150
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2024

Keywords

Examples

			The prime-powers inclusive (A000961) are:
  1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, ...
with first differences (A057820):
  1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, ...
with first differences (A376596):
  0, 0, 0, 1, -1, 0, 1, 0, 1, -2, 1, 2, -2, 0, 0, 0, -1, 4, -1, -2, 2, -2, 2, 2, ...
with first appearances (A376653):
  1, 4, 5, 10, 12, 18, 25, 45, 47, 48, 60, 68, 69, 71, 80, 118, 121, 178, 179, 199, ...
		

Crossrefs

For first differences we had A057820, sorted firsts A376340(n)+1 (except first term).
These are the sorted positions of first appearances in A376596.
The exclusive version is a(n) - 1 = A376654(n), except first term.
For squarefree instead of prime-power we have A376655.
A000961 lists prime-powers inclusive, exclusive A246655.
A001597 lists perfect-powers, complement A007916.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.
A064113 lists positions of adjacent equal prime gaps.
For prime-powers inclusive: A057820 (first differences), A376597 (inflections and undulations), A376598 (nonzero curvature).
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376599 (non-prime-power).

Programs

  • Mathematica
    q=Differences[Select[Range[100],#==1||PrimePowerQ[#]&],2];
    Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]

A376654 Sorted positions of first appearances in the second differences of consecutive prime-powers exclusive (A246655).

Original entry on oeis.org

3, 4, 9, 11, 17, 24, 44, 46, 47, 59, 67, 68, 70, 79, 117, 120, 177, 178, 198, 205, 206, 215, 243, 244, 303, 324, 326, 401, 465, 483, 604, 800, 879, 938, 1032, 1054, 1076, 1233, 1280, 1720, 1889, 1890, 1905, 1939, 1959, 1961, 2256, 2289, 2409, 2879, 3149
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2024

Keywords

Examples

			The prime-powers exclusive (A246655) are:
  2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, ...
with first differences (A057820 except first term) :
  1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 3, ...
with first differences (A376596 except first term):
  0, 0, 1, -1, 0, 1, 0, 1, -2, 1, 2, -2, 0, 0, 0, -1, 4, -1, -2, 2, -2, 2, 2, -4, ...
with first appearances (A376654):
  1, 3, 4, 9, 11, 17, 24, 44, 46, 47, 59, 67, 68, 70, 79, 117, 120, 177, 178, 198, ...
		

Crossrefs

For first differences we have A376340.
These are the sorted positions of first appearances in A376596 except first term.
The inclusive version is a(n) + 1 = A376653(n), except first term.
For squarefree instead of prime-power we have A376655.
A000961 lists prime-powers inclusive, exclusive A246655.
A001597 lists perfect-powers, complement A007916.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.
For prime-powers inclusive: A057820 (first differences), A376597 (inflections and undulations), A376598 (nonzero curvature).
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376599 (non-prime-power).

Programs

  • Mathematica
    q=Differences[Select[Range[1000],PrimePowerQ[#]&],2];
    Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]

A378371 Distance between n and the least non prime power >= n, allowing 1.

Original entry on oeis.org

0, 4, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2024

Keywords

Comments

Non prime powers allowing 1 (A361102) are numbers that are not a prime power (A246655), namely 1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, ...

Examples

			The least non prime power >= 4 is 6, so a(4) = 2.
		

Crossrefs

Sequences obtained by adding n to each term are placed in parentheses below.
For prime we have A007920 (A151800), strict A013632.
For composite we have A010051 (A113646 except initial terms).
For perfect power we have A074984 (A377468)
For squarefree we have A081221 (A067535).
For nonsquarefree we have (A120327).
For non perfect power we have A378357 (A378358).
The opposite version is A378366 (A378367).
For prime power we have A378370, strict A377282 (A000015).
This sequence is A378371 (A378372).
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime powers, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
Prime powers between primes: A053607, A080101, A304521, A366833, A377057.

Programs

  • Mathematica
    Table[NestWhile[#+1&,n,PrimePowerQ[#]&]-n,{n,100}]

Formula

a(n) = A378372(n) - n.

A376594 Inflection and undulation points in the sequence of nonsquarefree numbers (A013929).

Original entry on oeis.org

5, 11, 12, 13, 17, 19, 20, 25, 33, 37, 39, 40, 41, 47, 53, 57, 62, 70, 71, 76, 81, 82, 83, 88, 92, 93, 96, 98, 103, 109, 113, 118, 123, 130, 131, 133, 137, 139, 146, 149, 154, 155, 156, 161, 165, 168, 169, 174, 179, 180, 183, 187, 188, 189, 193, 201, 211, 213
Offset: 1

Views

Author

Gus Wiseman, Oct 04 2024

Keywords

Comments

These are points at which the second differences (A376593) are zero.

Examples

			The nonsquarefree numbers (A013929) are:
  4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, 54, ...
with first differences (A078147):
  4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, 4, 4, 3, ...
with first differences (A376593):
  -3, 2, 1, -2, 0, 2, -3, 1, -1, 3, 0, 0, 0, -3, 2, -2, 0, 1, 0, 0, 2, -1, -2, 3, ...
with zeros (A376594) at:
  5, 11, 12, 13, 17, 19, 20, 25, 33, 37, 39, 40, 41, 47, 53, 57, 62, 70, 71, 76, ...
		

Crossrefs

The first differences were A078147.
These are the zeros of A376593.
The complement is A376595.
A000040 lists the prime numbers, differences A001223.
A005117 lists squarefree numbers, differences A076259.
A013929 lists nonsquarefree numbers, differences A078147.
A064113 lists positions of adjacent equal prime gaps.
A114374 counts partitions into nonsquarefree numbers.
For inflections and undulations: A064113 (prime), A376602 (composite), A376588 (non-perfect-power), A376597 (prime-power), A376600 (non-prime-power).
For nonsquarefree numbers: A013929 (terms), A078147 (first differences), A376593 (second differences), A376595 (nonzero curvature).

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],!SquareFreeQ[#]&],2],0]

A378370 Distance between n and the least prime power >= n, allowing 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 0, 3, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 4, 3, 2, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 3, 2, 1, 0, 1, 0, 5, 4, 3, 2, 1, 0, 1, 0, 1, 0, 5, 4, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 27 2024

Keywords

Comments

Prime powers allowing 1 are listed by A000961.

Crossrefs

Sequences obtained by adding n to each term are placed in parentheses below.
For prime instead of prime power we have A007920 (A007918), strict A013632.
For perfect power we have A074984 (A377468), opposite A069584 (A081676).
For squarefree we have A081221 (A067535).
The restriction to the prime numbers is A377281 (A345531).
The strict version is A377282 = a(n) + 1.
For non prime power instead of prime power we have A378371 (A378372).
The opposite version is A378457, strict A276781.
A000015 gives the least prime power >= n, opposite A031218.
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime powers, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
A151800 gives the least prime > n.
Prime-powers between primes: A053607, A080101, A304521, A366833, A377057.

Programs

  • Mathematica
    Table[NestWhile[#+1&,n,#>1&&!PrimePowerQ[#]&]-n,{n,100}]

Formula

a(n) = A000015(n) - n.
a(n) = A377282(n - 1) - 1 for n > 1.
Previous Showing 11-20 of 22 results. Next