cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A384393 Heinz numbers of integer partitions with more than one proper way to choose disjoint strict partitions of each part.

Original entry on oeis.org

11, 13, 17, 19, 23, 25, 29, 31, 34, 37, 38, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 121, 122, 123, 127, 129, 131, 133, 134
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2025

Keywords

Comments

By "proper" we exclude the case of all singletons, which is disjoint when n is squarefree.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The prime indices of 275 are {3,3,5}, with a total of 2 proper choices: ((3),(2,1),(5)) and ((2,1),(3),(5)), so 275 is in the sequence.
The terms together with their prime indices begin:
    11: {5}      51: {2,7}      82: {1,13}
    13: {6}      53: {16}       83: {23}
    17: {7}      55: {3,5}      85: {3,7}
    19: {8}      57: {2,8}      86: {1,14}
    23: {9}      58: {1,10}     87: {2,10}
    25: {3,3}    59: {17}       89: {24}
    29: {10}     61: {18}       91: {4,6}
    31: {11}     62: {1,11}     93: {2,11}
    34: {1,7}    65: {3,6}      94: {1,15}
    37: {12}     67: {19}       95: {3,8}
    38: {1,8}    69: {2,9}      97: {25}
    41: {13}     71: {20}      101: {26}
    43: {14}     73: {21}      103: {27}
    46: {1,9}    74: {1,12}    106: {1,16}
    47: {15}     77: {4,5}     107: {28}
    49: {4,4}    79: {22}      109: {29}
		

Crossrefs

Without "proper" we get A384321 (strict A384322), counted by A384317 (strict A384318).
The case of no choices is A384349, counted by A384348.
These are positions of terms > 1 in A384389.
The case of a unique proper choice is A384390, counted by A384319.
Partitions of this type are counted by A384395.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say partitions, ranks A351294 or A381432.
A279790 and A279375 count ways to choose disjoint strict partitions of prime indices.
A351293 counts non-Look-and-Say partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
    Select[Range[100],Length[pofprop[prix[#]]]>1&]

A384350 Number of subsets of {1..n} containing at least one element that is a sum of distinct non-elements.

Original entry on oeis.org

0, 0, 0, 1, 4, 13, 33, 81, 183, 402, 856, 1801, 3721, 7646, 15567, 31575
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2025

Keywords

Comments

Conjecture: Also the number of subsets of {1..n} such that it is possible in more than one way to choose a disjoint family of strict integer partitions, one of each element.

Examples

			For the set s = {1,5} we have 5 = 2+3, so s is counted under a(5).
The a(0) = 0 through a(5) = 13 subsets:
  .  .  .  {3}  {3}    {3}
                {4}    {4}
                {2,4}  {5}
                {3,4}  {1,5}
                       {2,4}
                       {2,5}
                       {3,4}
                       {3,5}
                       {4,5}
                       {1,4,5}
                       {2,3,5}
                       {2,4,5}
                       {3,4,5}
		

Crossrefs

The complement is counted by A326080, allowing repeats A326083.
For strict partitions of n instead of subsets of {1..n} we have A384318, ranks A384322.
First differences are A384391.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A179009 counts maximally refined strict partitions, ranks A383707.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
A383706 counts ways to choose disjoint strict partitions of prime indices, non-disjoint A357982, non-strict A299200.

Programs

  • Mathematica
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@nonsets[#]]!={}&]],{n,0,10}]

A384391 Number of subsets of {1..n} containing n and some element that is a sum of distinct non-elements.

Original entry on oeis.org

0, 0, 1, 3, 9, 20, 48, 102, 219, 454, 945, 1920, 3925, 7921, 16008
Offset: 0

Views

Author

Gus Wiseman, Jun 06 2025

Keywords

Examples

			The a(0) = 0 through a(6) = 20 subsets:
  .  .  .  {3}  {4}    {5}      {6}
                {2,4}  {1,5}    {1,6}
                {3,4}  {2,5}    {2,6}
                       {3,5}    {3,6}
                       {4,5}    {4,6}
                       {1,4,5}  {5,6}
                       {2,3,5}  {1,3,6}
                       {2,4,5}  {1,5,6}
                       {3,4,5}  {2,3,6}
                                {2,4,6}
                                {2,5,6}
                                {3,4,6}
                                {3,5,6}
                                {4,5,6}
                                {1,3,5,6}
                                {1,4,5,6}
                                {2,3,4,6}
                                {2,3,5,6}
                                {2,4,5,6}
                                {3,4,5,6}
		

Crossrefs

The complement with n is counted by A179822, first differences of A326080.
Partial sums are A384350.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A179009 counts maximally refined strict partitions, ranks A383707.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
A383706 counts ways to choose disjoint strict partitions of prime indices, non-disjoint A357982, non-strict A299200.

Programs

  • Mathematica
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@nonsets[#]]!={}&]],{n,0,10}]

A384392 Number of integer partitions of n whose distinct parts are maximally refined.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 7, 10, 14, 20, 24, 33, 41, 55, 70, 88, 110, 140, 171, 214, 265, 324, 397, 485, 588, 711, 861, 1032, 1241, 1486, 1773
Offset: 0

Views

Author

Gus Wiseman, Jun 07 2025

Keywords

Comments

Given any partition, the following are equivalent:
1) The distinct parts are maximally refined.
2) Every strict partition of a part contains a part. In other words, if y is the set of parts and z is any strict partition of any element of y, then z must contain at least one element from y.
3) No part is a sum of distinct non-parts.

Examples

			The a(1) = 1 through a(8) = 14 partitions:
  (1)  (2)   (21)   (22)    (32)     (222)     (322)      (332)
       (11)  (111)  (31)    (41)     (321)     (331)      (431)
                    (211)   (221)    (411)     (421)      (521)
                    (1111)  (311)    (2211)    (2221)     (2222)
                            (2111)   (3111)    (3211)     (3221)
                            (11111)  (21111)   (4111)     (3311)
                                     (111111)  (22111)    (4211)
                                               (31111)    (22211)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The strict case is A179009, ranks A383707.
For subsets instead of partitions we have A326080, complement A384350.
These partitions are ranked by A384320, complement A384321.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@nonsets[#]]=={}&]],{n,0,15}]

A384723 Heinz numbers of conjugates of maximally refined strict integer partitions.

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 24, 30, 60, 90, 120, 150, 180, 210, 240, 420, 540, 630, 840, 1050, 1260, 1470, 1680, 1890, 2100, 2310, 2520, 3360, 4620, 6300, 6930, 7560, 9240
Offset: 1

Views

Author

Gus Wiseman, Jun 09 2025

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Given a partition, the following are equivalent:
1) The distinct parts are maximally refined.
2) Every strict partition of a part contains a part. In other words, if y is the set of parts and z is any strict partition of any element of y, then z must contain at least one element from y.
3) No part is a sum of distinct non-parts.

Examples

			The terms together with their prime indices begin:
     1: {}
     2: {1}
     4: {1,1}
     6: {1,2}
    12: {1,1,2}
    18: {1,2,2}
    24: {1,1,1,2}
    30: {1,2,3}
    60: {1,1,2,3}
    90: {1,2,2,3}
   120: {1,1,1,2,3}
   150: {1,2,3,3}
   180: {1,1,2,2,3}
   210: {1,2,3,4}
   240: {1,1,1,1,2,3}
   420: {1,1,2,3,4}
   540: {1,1,2,2,2,3}
   630: {1,2,2,3,4}
   840: {1,1,1,2,3,4}
		

Crossrefs

Partitions of this type are counted by A179009.
The conjugate version is A383707, proper A384390.
Appears to be the positions of 1 in A384005 (conjugate A383706).
For at least one instead of exactly one choice we appear to have A384010.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
A357982 counts strict partitions of prime indices, non-strict A299200.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Select[Range[100],With[{y=conj[prix[#]]},UnsameQ@@y&&Intersection[y,Total/@nonsets[y]]=={}]&]
Previous Showing 11-15 of 15 results.