A384393
Heinz numbers of integer partitions with more than one proper way to choose disjoint strict partitions of each part.
Original entry on oeis.org
11, 13, 17, 19, 23, 25, 29, 31, 34, 37, 38, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 121, 122, 123, 127, 129, 131, 133, 134
Offset: 1
The prime indices of 275 are {3,3,5}, with a total of 2 proper choices: ((3),(2,1),(5)) and ((2,1),(3),(5)), so 275 is in the sequence.
The terms together with their prime indices begin:
11: {5} 51: {2,7} 82: {1,13}
13: {6} 53: {16} 83: {23}
17: {7} 55: {3,5} 85: {3,7}
19: {8} 57: {2,8} 86: {1,14}
23: {9} 58: {1,10} 87: {2,10}
25: {3,3} 59: {17} 89: {24}
29: {10} 61: {18} 91: {4,6}
31: {11} 62: {1,11} 93: {2,11}
34: {1,7} 65: {3,6} 94: {1,15}
37: {12} 67: {19} 95: {3,8}
38: {1,8} 69: {2,9} 97: {25}
41: {13} 71: {20} 101: {26}
43: {14} 73: {21} 103: {27}
46: {1,9} 74: {1,12} 106: {1,16}
47: {15} 77: {4,5} 107: {28}
49: {4,4} 79: {22} 109: {29}
These are positions of terms > 1 in
A384389.
Partitions of this type are counted by
A384395.
A279790 and
A279375 count ways to choose disjoint strict partitions of prime indices.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
pofprop[y_]:=Select[DeleteCases[Join@@@Tuples[IntegerPartitions/@y],y],UnsameQ@@#&];
Select[Range[100],Length[pofprop[prix[#]]]>1&]
A384350
Number of subsets of {1..n} containing at least one element that is a sum of distinct non-elements.
Original entry on oeis.org
0, 0, 0, 1, 4, 13, 33, 81, 183, 402, 856, 1801, 3721, 7646, 15567, 31575
Offset: 0
For the set s = {1,5} we have 5 = 2+3, so s is counted under a(5).
The a(0) = 0 through a(5) = 13 subsets:
. . . {3} {3} {3}
{4} {4}
{2,4} {5}
{3,4} {1,5}
{2,4}
{2,5}
{3,4}
{3,5}
{4,5}
{1,4,5}
{2,3,5}
{2,4,5}
{3,4,5}
For strict partitions of n instead of subsets of {1..n} we have
A384318, ranks
A384322.
A383706 counts ways to choose disjoint strict partitions of prime indices, non-disjoint
A357982, non-strict
A299200.
-
nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@nonsets[#]]!={}&]],{n,0,10}]
A384391
Number of subsets of {1..n} containing n and some element that is a sum of distinct non-elements.
Original entry on oeis.org
0, 0, 1, 3, 9, 20, 48, 102, 219, 454, 945, 1920, 3925, 7921, 16008
Offset: 0
The a(0) = 0 through a(6) = 20 subsets:
. . . {3} {4} {5} {6}
{2,4} {1,5} {1,6}
{3,4} {2,5} {2,6}
{3,5} {3,6}
{4,5} {4,6}
{1,4,5} {5,6}
{2,3,5} {1,3,6}
{2,4,5} {1,5,6}
{3,4,5} {2,3,6}
{2,4,6}
{2,5,6}
{3,4,6}
{3,5,6}
{4,5,6}
{1,3,5,6}
{1,4,5,6}
{2,3,4,6}
{2,3,5,6}
{2,4,5,6}
{3,4,5,6}
The complement with n is counted by
A179822, first differences of
A326080.
A383706 counts ways to choose disjoint strict partitions of prime indices, non-disjoint
A357982, non-strict
A299200.
Cf.
A279375,
A279790,
A317141,
A317142,
A326083,
A383708,
A383710,
A384317,
A384318,
A384319,
A384320,
A384321.
-
nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@nonsets[#]]!={}&]],{n,0,10}]
A384392
Number of integer partitions of n whose distinct parts are maximally refined.
Original entry on oeis.org
1, 1, 2, 2, 4, 6, 7, 10, 14, 20, 24, 33, 41, 55, 70, 88, 110, 140, 171, 214, 265, 324, 397, 485, 588, 711, 861, 1032, 1241, 1486, 1773
Offset: 0
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (21) (22) (32) (222) (322) (332)
(11) (111) (31) (41) (321) (331) (431)
(211) (221) (411) (421) (521)
(1111) (311) (2211) (2221) (2222)
(2111) (3111) (3211) (3221)
(11111) (21111) (4111) (3311)
(111111) (22111) (4211)
(31111) (22211)
(211111) (32111)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
For subsets instead of partitions we have
A326080, complement
A384350.
Cf.
A179822,
A279375,
A279790,
A299200,
A317142,
A326083,
A357982,
A383706,
A383708,
A383710,
A384317,
A384318,
A384319,
A384391.
-
nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@nonsets[#]]=={}&]],{n,0,15}]
A384723
Heinz numbers of conjugates of maximally refined strict integer partitions.
Original entry on oeis.org
1, 2, 4, 6, 12, 18, 24, 30, 60, 90, 120, 150, 180, 210, 240, 420, 540, 630, 840, 1050, 1260, 1470, 1680, 1890, 2100, 2310, 2520, 3360, 4620, 6300, 6930, 7560, 9240
Offset: 1
The terms together with their prime indices begin:
1: {}
2: {1}
4: {1,1}
6: {1,2}
12: {1,1,2}
18: {1,2,2}
24: {1,1,1,2}
30: {1,2,3}
60: {1,1,2,3}
90: {1,2,2,3}
120: {1,1,1,2,3}
150: {1,2,3,3}
180: {1,1,2,2,3}
210: {1,2,3,4}
240: {1,1,1,1,2,3}
420: {1,1,2,3,4}
540: {1,1,2,2,2,3}
630: {1,2,2,3,4}
840: {1,1,1,2,3,4}
Partitions of this type are counted by
A179009.
For at least one instead of exactly one choice we appear to have
A384010.
A122111 represents conjugation in terms of Heinz numbers.
A357982 counts strict partitions of prime indices, non-strict
A299200.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
Select[Range[100],With[{y=conj[prix[#]]},UnsameQ@@y&&Intersection[y,Total/@nonsets[y]]=={}]&]
Comments