cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Alex Jordan

Alex Jordan's wiki page.

Alex Jordan has authored 2 sequences.

A260674 Primes p for which the greatest common divisor of 2^p+1 and 3^p+1 is greater than 1.

Original entry on oeis.org

2, 83, 107, 367, 569, 887, 1327, 1451, 1621, 1987, 2027, 3307, 3547, 3631, 3691, 4421, 4547, 4967, 5669, 5843, 5927, 6011, 6911, 6991, 7207, 7949, 8167, 8431, 10771, 10889, 11287, 11621, 12007, 12227, 12487, 12763, 12983, 15391, 15767, 16127, 17107, 17183, 17231
Offset: 1

Author

Alex Jordan, Nov 14 2015

Keywords

Comments

Primes p such that A066803(p)>1. - Tom Edgar, Nov 15 2015

Examples

			Since GCD(2^83 + 1, 3^83 + 1) = 499, the prime 83 is in the sequence. It is only the second such prime, so a(2) = 83.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range@ 2000, GCD[2^# + 1, 3^# + 1] > 1 &] (* Michael De Vlieger, Nov 16 2015 *)
  • PARI
    list(lim)=forprime(p=2,lim,if(gcd(2^p+1,3^p+1)>1,print1(p, ", "))) \\ Anders Hellström, Nov 14 2015
    
  • Python
    from sympy import prime
    from math import gcd
    A260674_list = [p for p in (prime(n) for n in range(1,10**3)) if gcd(2**p+1,3**p+1) > 1] # Chai Wah Wu, Nov 23 2015
  • Sage
    # code will list all such primes no larger than the N-th prime.
    N=1000
    for k in range(N):
        if (gcd(2^Primes().unrank(k)+1,3^Primes().unrank(k)+1) != 1):
            print(Primes().unrank(k))
    

A260466 Number of integers in Pascal's triangle strictly between 1 and n.

Original entry on oeis.org

0, 0, 1, 3, 5, 7, 10, 12, 14, 16, 20, 22, 24, 26, 28, 32, 34, 36, 38, 40, 43, 47, 49, 51, 53, 55, 57, 59, 63, 65, 67, 69, 71, 73, 75, 79, 83, 85, 87, 89, 91, 93, 95, 97, 99, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 125, 129, 131, 133, 135, 137, 139, 141
Offset: 1

Author

Alex Jordan, Jul 26 2015

Keywords

Comments

Ignoring the first two terms of A003016, a(n) is partial sums of A003016.
a(n) >= 2n-5 trivially; for n>=7, a(n) > 2n-5.

Examples

			For n=7, the members of Pascal's triangle strictly between 1 and 7 are C(2,1), C(3,1), C(3,2), C(4,1), C(4,2), C(4,3), C(5,1), C(5,4), C(6,1), and C(6,5). So a(7)=10.
		

Crossrefs

Programs

  • Mathematica
    t = 0 * Range[101]; Do[x = Binomial[a, b]; If[1 < x <= 100, t[[x + 1]]++], {a, 100}, {b, a}]; Accumulate@ t (* Giovanni Resta, Aug 16 2015 *)
  • PARI
    nbn(n) = {my(nb = 0); for (j=1, n, for (k=1, n, b = binomial(j, k); if ((b>1) && (b<=n), nb++););); nb;} \\ Michel Marcus, Jul 30 2015

Extensions

More terms from Michel Marcus, Jul 30 2015