Alexander Malkis has authored 3 sequences.
A290642
a(n) is the maximum diameter for an n-threaded binary program. In other words, a(n) is the maximal finite distance in the transition graph of an n-threaded binary program.
Original entry on oeis.org
3, 7, 13, 14, 15, 18
Offset: 1
A097472
Number of different candle trees having a total of m edges.
Original entry on oeis.org
1, 3, 10, 31, 96, 296, 912, 2809, 8651, 26642, 82047, 252672, 778128, 2396320, 7379697, 22726483, 69988378, 215535903, 663763424, 2044122936, 6295072048, 19386276329, 59701891739, 183857684514, 566207320575, 1743689586432
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Alexander Malkis, Polyedges, polyominoes and the 'Digit' game, diploma thesis in computer science, Universität des Saarlandes, 2003, Saarbrücken.
- Index entries for linear recurrences with constant coefficients, signature (3,1,-2,-1).
-
CoefficientList[Series[1/(x^4+2x^3-x^2-3x+1),{x,0,30}],x] (* or *) LinearRecurrence[{3,1,-2,-1},{1,3,10,31},30] (* Harvey P. Dale, Jun 14 2011 *)
-
a(n):=sum(sum(binomial(k,n-m-k+1)*binomial(k+2*m-1,2*m-1),k,1,n-m+1),m,1,n)+1; /* Vladimir Kruchinin, May 12 2011 */
-
a(n)=sum(m=1,n,sum(k=1,n-m+1,binomial(k,n-m-k+1)*binomial(k+2*m-1,2*m-1))) \\ Charles R Greathouse IV, Jun 17 2013
A096267
Number of fixed polyedges with n edges (number of ways of embedding connected undirected graphs with n edges into the plane square lattice, inequivalent up to translation).
Original entry on oeis.org
2, 6, 22, 88, 372, 1628, 7312, 33466, 155446, 730534, 3466170, 16576874, 79810756, 386458826, 1880580352, 9190830700, 45088727820, 221945045488, 1095798917674, 5424898610958, 26922433371778, 133906343014110, 667370905196930, 3332257266746004
Offset: 1
_|_|_ is a polyedge with 5 edges
- Alexander Malkis, Polyedges, polyominoes and the 'Digit' game, diploma thesis in computer science, Universität des Saarlandes, 2003, Saarbrücken.
- Stephan Mertens and Cristopher Moore, Series expansion of the percolation threshold on hypercubic lattices, J. Phys. A: Math. Theor., 51 (2018), 475001. See Table 1.
Comments