A260690 Array read by antidiagonals: D(w,h) is the maximum number of diagonals that can be placed in a w X h grid made up of unit squares when diagonals are placed in the unit squares in such a way that no two diagonals may cross or intersect at an endpoint.
1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 5, 5, 6, 6, 8, 8, 6, 6, 7, 7, 10, 10, 10, 7, 7, 8, 8, 12, 12, 12, 12, 8, 8, 9, 9, 14, 14, 16, 14, 14, 9, 9, 10, 10, 16, 16, 18, 18, 16, 16, 10, 10, 11, 11, 18, 18, 21, 21, 21, 18, 18, 11, 11, 12, 12, 20, 20, 24, 24, 24, 24, 20, 20, 12, 12
Offset: 1
Examples
The table begins as follows: . h\w| 1 2 3 4 5 6 7 8 9 10 11 12 13 ---+-------------------------------------- 1| 1 2 3 4 5 6 7 8 9 10 11 12 13 2| 2 3 4 5 6 7 8 9 10 11 12 13 14 3| 3 4 6 8 10 12 14 16 18 20 22 24 26 4| 4 5 8 10 12 14 16 18 20 22 24 26 28 5| 5 6 10 12 16 18 21 24 27 30 33 36 39 6| 6 7 12 14 18 21 24 27 30 33 36 39 42 7| 7 8 14 16 21 24 29 32 37 40 44 48 52 8| 8 9 16 18 24 27 32 36 40 44 48 52 56 9| 9 10 18 20 27 30 37 40 46 50 56 60 66 10|10 11 20 22 30 33 40 44 50 55 60 65 70 11|11 12 22 24 33 36 44 48 56 60 68 72 79 12|12 13 24 26 36 39 48 52 60 65 72 78 84 13|13 14 26 28 39 42 52 56 66 70 79 84 93 . If at least one of the dimensions (w,h) is even, the exact value of D(w,h) is given by the appropriate formula in the Formula section. A table consisting of only the terms for which both dimensions are odd begins as follows: . h\w| 1 3 5 7 9 11 13 15 17 19 21 23 25 ---+-------------------------------------------------- 1| 1 3 5 7 9 11 13 15 17 19 21 23 25 3| 3 6 10 14 18 22 26 30 34 38 42 46 50 5| 5 10 16 21 27 33 39 45 51 57 63 69 75 7| 7 14 21 29 37 44 52 60 68 76 84 92 100 9| 9 18 27 37 46 56 66 76 85 95 105 115 125 11|11 22 33 44 56 68 79 91 103 115 127 138 150 13|13 26 39 52 66 79 93 107 120 134 148 162 176 15|15 30 45 60 76 91 107 122 138 154 169 185 201 17|17 34 51 68 85 103 120 138 156 173 191 209 227 19|19 38 57 76 95 115 134 154 173 193 213 232 252 21|21 42 63 84 105 127 148 169 191 213 234 256 278 23|23 46 69 92 115 138 162 185 209 232 256 280 303 25|25 50 75 100 125 150 176 201 227 252 278 303 329 . The table below shows (with known 0 values replaced by periods and unknown values left blank, for readability) the differences by which D(w,h) exceeds the number of diagonals resulting from application of the simple nested L-shape pattern referred to above: . 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 h\w| 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 ---+---------------------------------------------------- 1| . . . . . . . . . . . . . . . . . . . . . . . . . . 3| . . . . . . . . . . . . . . . . . . . . . . . . . . 5| . . 1 . . . . . . . . . . . . . . . . . . . . . . . 7| . . . 1 1 . . . . . . . . . . . . . . . . . . . . . 9| . . . 1 1 1 1 1 . . . . . . . . . . . . . . . . . . 11| . . . . 1 2 1 1 1 1 1 . . . . . . . . . . . . . . . 13| . . . . 1 1 2 2 1 1 1 1 1 1 1 . . . . . . . . . . . 15| . . . . 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 . . . . . . . 17| . . . . . 1 1 2 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 . . 19| . . . . . 1 1 2 2 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 21| . . . . . 1 1 1 2 3 3 3 3 2 2 2 2 2 2 23| . . . . . . 1 1 2 2 3 4 3 3 3 25| . . . . . . 1 1 2 2 3 3 4 4 27| . . . . . . 1 1 1 2 2 3 4 29| . . . . . . 1 1 1 2 2 3 5 31| . . . . . . . 1 1 2 2 33| . . . . . . . 1 1 1 2 35| . . . . . . . 1 1 1 2 37| . . . . . . . 1 1 1 2 39| . . . . . . . . 1 1 41| . . . . . . . . 1 1 43| . . . . . . . . 1 1 45| . . . . . . . . 1 1 47| . . . . . . . . 1 1 49| . . . . . . . . . 1 51| . . . . . . . . . 1
Links
- Peter Boyland, Gabriella Pintér, István Laukó, Ivan Roth, Jon E. Schoenfield, and Stephen Wasielewski, On the Maximum Number of Non-intersecting Diagonals in an Array, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.4.
Crossrefs
A264041 gives the terms along the main diagonal.
Formula
D(n,n) = A264041(n).
If exactly one of the dimensions w and h is even, then D(w,h) = x*(y+1)/2 where x and y are the even and odd dimensions, respectively.
If both dimensions are even, then D(w,h) = (x/2)*(y+1) where x is the smaller dimension.
If both dimensions are odd, it can be shown (see Links) that D(w,h) >= (2*s-1)*t + floor((2*sqrt(s^2-s*t+t^2) - 2*s + t)/3) where s = (max(w,h)+1)/2 and t = (min(w,h)+1)/2.
Comments