cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Janet Lee

Janet Lee's wiki page.

Janet Lee has authored 1 sequences.

A239668 Sum of the composite divisors of n^2.

Original entry on oeis.org

0, 4, 9, 28, 25, 85, 49, 124, 117, 209, 121, 397, 169, 389, 394, 508, 289, 841, 361, 953, 730, 917, 529, 1645, 775, 1265, 1089, 1757, 841, 2810, 961, 2044, 1714, 2129, 1754, 3745, 1369, 2645, 2362, 3929, 1681, 5174, 1849, 4109, 3742, 3845, 2209, 6637, 2793, 5459, 3970
Offset: 1

Author

Janet Lee, Mar 23 2014

Keywords

Examples

			For n=2, the sum of the composite factors of n^2 is equal to 4.
		

Crossrefs

Programs

  • Maple
    A008472 := n -> add(d, d = select(isprime, numtheory[divisors](n))):
    f:=n->numtheory[sigma](n^2)-A008472(n)-1; [seq(f(n),n=1..100)]; # N. J. A. Sloane, Mar 31 2014
  • Mathematica
    a[n_] := DivisorSum[n^2, If[# == 1 || PrimeQ[#], 0, #]& ]; Array[a, 60] (* Jean-François Alcover, Dec 18 2015 *)
    Table[Total[Select[Divisors[n^2],CompositeQ]],{n,60}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 06 2017 *)
  • PARI
    a(n) = sumdiv(n^2, d, d*(!isprime(d) && (d != 1))); \\ Michel Marcus, Mar 31 2014

Formula

a(n) = sigma(n^2) - sopf(n^2) - 1.
a(n) = A000203(n^2) - A008472(n^2) - 1. - Wesley Ivan Hurt, Mar 30 2014
a(n) = A023891(n^2). - Michel Marcus, Mar 31 2014
a(n) = n^2 if n is prime. - Zak Seidov, Mar 31 2014

Extensions

Formula corrected by Wesley Ivan Hurt, Mar 30 2014
More terms from N. J. A. Sloane, Mar 31 2014