A353872 Numbers k such that the arithmetic differential equation m'' - m'm + k = 0 has exactly one positive solution in m with two prime factors (counted with multiplicity).
12, 29, 49, 69, 108, 120, 203, 243, 285, 382, 404, 453, 592, 645, 677, 788, 848, 996, 1140, 1149, 1241, 1365, 1779, 1796, 1797, 1857, 2032, 2236, 2649, 2704, 2812, 2870, 3143, 3188, 3388, 3443, 3525, 3831, 4372, 4379, 4592, 4799, 4911, 5204, 5364, 5520, 5814
Offset: 1
Keywords
Examples
k = 12 is in the sequence, since for m = 4, we have m' = m'' = 4, so m'm - m'' = 16 - 4 = 12 = k.
Links
- Nathan Mabey, C Script
Programs
-
C
See Link
-
MATLAB
function a = A353872( max_pow_2 ) a = []; maxad2 = ad(ad(2^max_pow_2)); for m = 1:2^max_pow_2 if length(factor(m)) == 2 d = ad(m); b = ad(d); c = d*m; k(m) = b - c; end end for n = 1:length(k) if k(n) > -maxad2; if isempty(find(a == k(n),1)) if 1 == length(find(k == k(n))) a = [a k(n)]; end end end end a = sort(-a); end function y = ad( x ) y = 0; if(x > 1) p = factor(x); pu = unique(p); for n = 1:length(pu); y = y + (x*length(find(p == pu(n))))/pu(n); end end end % Thomas Scheuerle, Jun 15 2022
Extensions
More terms from Jinyuan Wang, Jun 15 2022
Comments