cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Paulo Romero Zanconato Pinto

Paulo Romero Zanconato Pinto's wiki page.

Paulo Romero Zanconato Pinto has authored 9 sequences.

A277117 Decimal expansion of e^6/(Pi^5+Pi^4), where e = exp(1).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 4, 3, 8, 0, 8, 1, 0, 7, 6, 2, 9, 9, 4, 7, 6, 3, 7, 4, 3, 2, 0, 1, 2, 2, 8, 9, 0, 0, 5, 8, 1, 9, 0, 4, 0, 9, 2, 1, 5, 3, 0, 6, 0, 3, 6, 9, 5, 9, 2, 3, 3, 5, 2, 0, 0, 4, 8, 6, 4, 3, 9, 0, 0, 0, 6, 1, 4, 3, 7, 1, 5, 8, 8, 9, 8, 2, 6, 5, 2, 5, 4, 8, 5, 3, 2, 4, 4, 1, 6, 8, 9, 9, 7, 5, 8, 3, 8, 6
Offset: 1

Author

Keywords

Examples

			1.0000000438081076299476374320122890058190409215306036959233520...
		

References

  • D. Wilson, pers. comm.

Programs

  • Mathematica
    RealDigits[E^6/(Pi^5+Pi^4),10,120][[1]] (* Harvey P. Dale, Apr 07 2019 *)
  • PARI
    exp(6)/(Pi^5+Pi^4) \\ Michel Marcus, Oct 02 2016

Formula

Equals A092512 /(A092731 + A092425).

A277115 Decimal expansion of e*phi/Pi, where phi = (sqrt(5) + 1)/2.

Original entry on oeis.org

1, 4, 0, 0, 0, 1, 3, 5, 8, 3, 6, 9, 0, 4, 8, 4, 8, 5, 6, 2, 9, 8, 6, 1, 3, 5, 0, 2, 9, 9, 9, 7, 9, 0, 2, 6, 0, 3, 8, 1, 9, 8, 6, 6, 9, 0, 2, 5, 3, 1, 0, 6, 4, 2, 9, 9, 1, 7, 5, 9, 1, 7, 3, 0, 4, 4, 8, 1, 3, 8, 9, 5, 4, 6, 4, 0, 1, 5, 0, 6, 8, 2, 9, 0, 9, 8, 5, 8, 8, 1, 3, 8, 0, 1, 6, 1, 7, 5, 6, 5, 0, 8, 2, 6, 4
Offset: 1

Author

Keywords

Comments

An approximation to gamma(2) = 7/5. See A274981. - Omar E. Pol, Sep 30 2016

Examples

			1.400013583690484856298613502999790260381986690253106429917...
		

References

  • J. DePompeo (pers. comm., Mar. 29, 2004)

Crossrefs

Programs

  • Mathematica
    First@ RealDigits[N[E GoldenRatio/Pi, 120]] (* Michael De Vlieger, Sep 30 2016 *)
  • PARI
    exp(1)/Pi*(1+sqrt(5))/2;

Formula

Equals A001113 * A001622 / A000796.

A277113 a(n) = floor(n/(1-Pi/(sqrt(5)+1))).

Original entry on oeis.org

34, 68, 102, 137, 171, 205, 239, 274, 308, 342, 376, 411, 445, 479, 513, 548, 582, 616, 650, 685, 719, 753, 787, 822, 856, 890, 924, 959, 993, 1027, 1061, 1096, 1130, 1164, 1198, 1233, 1267, 1301, 1335, 1370, 1404, 1438, 1472, 1507, 1541, 1575, 1609, 1644, 1678
Offset: 1

Author

Keywords

Comments

The goal is to generate a ratio near 1 from two well-known constants.

Examples

			For n = 10 we have that floor(10/(1-Pi/(sqrt(5)+1))) = floor(10/0.02919448...) = floor(342.5304983...) so a(10) = 342.
		

Crossrefs

Complement of A277112.

Programs

  • Maple
    A277113:=n->floor(n/(1-Pi/(sqrt(5)+1))): seq(A277113(n), n=1..100);
  • Mathematica
    f[n_] := Floor[n/(1-Pi/(Sqrt[5]+1))]; Array[f, 100, 1]
  • PARI
    a(n) = n\(1-Pi/(sqrt(5)+1)) \\ Michel Marcus, Oct 29 2016

Formula

a(n) = floor(n/(1-Pi/(sqrt(5)+1))).

Extensions

More terms from Michel Marcus, Oct 29 2016

A277112 a(n) = floor(n*(1+sqrt(5))/Pi).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70
Offset: 0

Author

Keywords

Examples

			For n = 1000 we have that floor(1000*(1+sqrt(5))/Pi) = floor(1000*1.0300724296...) = floor(1030.0724296...) so a(1000) = 1030.
		

Crossrefs

Complement of A277113.

Programs

  • Maple
    A277112:=n->floor(n*(1+sqrt(5))/Pi): seq(A277112(n), n=0..100); # Wesley Ivan Hurt, Oct 31 2016
  • Mathematica
    f[n_] := Floor[n*(1+Sqrt[5])/Pi]; Array[f, 100, 0]

Formula

a(n) = floor(n*(1+sqrt(5))/Pi).

A277051 a(n) = floor(n/(1-3/Pi)).

Original entry on oeis.org

22, 44, 66, 88, 110, 133, 155, 177, 199, 221, 244, 266, 288, 310, 332, 355, 377, 399, 421, 443, 465, 488, 510, 532, 554, 576, 599, 621, 643, 665, 687, 710, 732, 754, 776, 798, 820, 843, 865, 887, 909, 931, 954, 976, 998, 1020, 1042, 1065, 1087, 1109, 1131, 1153, 1175
Offset: 1

Author

Keywords

Examples

			For n = 10 we have that floor(10/(1-3/Pi)) = floor(10/0.04719755...) = floor(211.8754045...) so a(10) = 221.
		

Crossrefs

Complement of A274399.

Programs

  • Maple
    A277051:=n->floor(n/(1-3/Pi)): seq(A277051(n), n=1..100); # Wesley Ivan Hurt, Sep 26 2016
  • Mathematica
    f[n_] := Floor[n/(1-3/Pi)]; Array[f, 100, 1]
  • Maxima
    makelist(floor(n / (1-3 / %pi )), n, 1, 100);
    
  • PARI
    a(n)=n\(1-3/Pi) \\ Charles R Greathouse IV, Sep 26 2016

Formula

a(n) = floor(n/(1-3/Pi)).

A274399 a(n) = floor(n*Pi/3).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70
Offset: 0

Author

Keywords

Examples

			For n = 1000 we have that floor(1000*Pi/3) = floor(1000*1.04719755...) = floor(1047.19755...) so a(1000) = 1047.
		

Crossrefs

Complement of A277051.

Programs

  • Maple
    A274399:=n->floor(n*Pi/3): seq(A274399(n), n=0..100); # Wesley Ivan Hurt, Sep 26 2016
  • Mathematica
    f[n_] := Floor[n*Pi/Floor[Pi]]; Array[f, 100, 0]
  • Maxima
    makelist(floor(n*(%pi/3)), n, 0, 100);
    
  • PARI
    a(n) = n*Pi\3; \\ Michel Marcus, Sep 26 2016

Formula

a(n) = floor(n*Pi/floor(Pi)) = floor(n*Pi/3).

A277092 Decimal expansion of e^Pi/Pi^e.

Original entry on oeis.org

1, 0, 3, 0, 3, 4, 5, 5, 2, 4, 2, 1, 6, 2, 1, 0, 8, 3, 2, 4, 4, 1, 5, 5, 2, 4, 3, 7, 5, 4, 4, 1, 4, 2, 3, 9, 1, 3, 3, 1, 1, 6, 7, 4, 5, 3, 5, 4, 2, 6, 3, 5, 0, 4, 7, 7, 5, 2, 0, 6, 0, 3, 7, 6, 9, 4, 3, 6, 8, 5, 8, 3, 3, 3, 3, 6, 7, 0, 7, 8, 4, 6, 6, 5, 3, 6, 6
Offset: 1

Author

Keywords

Examples

			1.030345524216210832441552437544142391331167453542635047752...
		

Crossrefs

Programs

Extensions

More digits from Jon E. Schoenfield, Mar 15 2018

A277052 a(n) = n+floor(n/(2/sqrt(Pi)-1)).

Original entry on oeis.org

8, 17, 26, 35, 43, 52, 61, 70, 79, 87, 96, 105, 114, 123, 131, 140, 149, 158, 166, 175, 184, 193, 202, 210, 219, 228, 237, 246, 254, 263, 272, 281, 290, 298, 307, 316, 325, 333, 342, 351, 360, 369, 377, 386, 395, 404, 413, 421, 430, 439, 448, 457, 465, 474
Offset: 1

Author

Keywords

Crossrefs

Complement of A277050.

Programs

  • Maple
    A277052:=n->n+floor(n/(2/sqrt(Pi)-1)): seq(A277052(n), n=1..100); # Wesley Ivan Hurt, Sep 26 2016
  • Mathematica
    f[n_] := n + Floor[n/(2/Sqrt[Pi]-1)]; Array[f, 100, 1]
  • PARI
    a(n) = n + floor(n/(2/sqrt(Pi)-1));

Formula

a(n) = n + floor(n/(2/sqrt(Pi) - 1)).

A277050 a(n) = floor(2*n/sqrt(Pi)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75
Offset: 0

Author

Keywords

Crossrefs

Cf. A037086, A190732, A277052 (complement).

Programs

  • Maple
    A277050:=n->floor(2*n/sqrt(Pi)): seq(A277050(n), n=0..100); # Wesley Ivan Hurt, Sep 26 2016
  • Mathematica
    Table[Floor[2 * n/Sqrt[Pi]], {n, 100}]
  • PARI
    a(n) = floor(2*n/sqrt(Pi));

Formula

a(n) = floor(2*n/sqrt(Pi)).