cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Peter James Foreman

Peter James Foreman's wiki page.

Peter James Foreman has authored 2 sequences.

A321129 Numerator of Sum_{k=1..n} (k*sin((Pi*k)/3))/sqrt(3).

Original entry on oeis.org

1, 3, 3, -1, -3, -3, 1, 9, 9, -1, -6, -6, 1, 15, 15, -1, -9, -9, 1, 21, 21, -1, -12, -12, 1, 27, 27, -1, -15, -15, 1, 33, 33, -1, -18, -18, 1, 39, 39, -1, -21, -21, 1, 45, 45, -1, -24, -24, 1, 51, 51, -1, -27, -27, 1, 57, 57, -1, -30, -30, 1, 63, 63, -1, -33
Offset: 1

Author

Peter James Foreman, Oct 27 2018

Keywords

Comments

The denominators are 2,2,2,1,1,2,2,2,1,1,2,2,2,1,1,...

Examples

			For n = 1 the sum is simply 1*sin((Pi*1)/3)/sqrt(3) = 1/2. So, a(1) = 1.
		

Programs

  • Maple
    a:=n->add((k*sin((Pi*k)/3))/sqrt(3),k=1..n): seq(numer(a(n)),n=1..50); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    a[n_]:=Numerator[Sum[(k*Sin[(Pi*k)/3])/Sqrt[3], {k,1,n}]]; Array[a, 50] (* or *) LinearRecurrence[{1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1}, {1, 3, 3, -1, -3, -3, 1, 9, 9, -1, -6}, 50] (* Stefano Spezia, Oct 27 2018 *)
  • PARI
    Vec(x*(1 + 2*x + x^2 - 2*x^3 - x^4 - 2*x^5 + x^6 + 2*x^7 + x^8) / ((1 - x)^2*(1 + x)*(1 - x + x^2)^2*(1 + x + x^2)^2) + O(x^80)) \\ Colin Barker, Oct 28 2018

Formula

a(3n+1) = (-1)^n.
a(6n-1) = a(6n) = -3n.
a(6n+2) = a(6n+3) = 6n+3.
a(n) = Numerator of ((n+1)*sin((n*Pi)/3)-n*sin(((n+1)*Pi)/3))/sqrt(3).
a(n) = a(n - 1) - a(n - 2) + a(n - 3) - a(n - 4) + a(n - 5) + a(n - 6) - a(n - 7) + a(n - 8) - a(n - 9) + a(n - 10) - a(n - 11) for n > 11. - Stefano Spezia, Oct 27 2018
G.f.: x*(1 + 2*x + x^2 - 2*x^3 - x^4 - 2*x^5 + x^6 + 2*x^7 + x^8) / ((1 - x)^2*(1 + x)*(1 - x + x^2)^2*(1 + x + x^2)^2). - Colin Barker, Oct 28 2018

Extensions

More terms from Vincenzo Librandi, Oct 28 2018

A321045 a(n) is the value of the first entry in the matrix A^n where A = [{1,2,3}, {4,5,6}, {7,8,9}].

Original entry on oeis.org

1, 1, 30, 468, 7560, 121824, 1963440, 31644432, 510008400, 8219725776, 132476037840, 2135095631568, 34411003154640, 554596768687824, 8938349587100880, 144057985642894032, 2321760077211226320, 37419444899740487376, 603083354885909384400, 9719800331483969538768
Offset: 0

Author

Peter James Foreman, Oct 26 2018

Keywords

Programs

  • PARI
    a(n) = ([1,2,3; 4,5,6; 7,8,9]^n)[1,1]; \\ Michel Marcus, Oct 26 2018

Formula

a(n) = (1/(132*2^n)) * ((55-7*sqrt(33))*(15+3*sqrt(33))^n + (55+7*sqrt(33))*(15-3*sqrt(33))^n).
G.f.: (3*x^2 + 14*x - 1)/(18*x^2 + 15*x - 1).
3^n | a(n+1). - R. J. Mathar, Jan 09 2020
Let b(n)=3^n*A015535(n) = 1,15,243,3915,.. (n>=0). Then 6*a(n) = 5*b(n)-69*b(n-1), n>0. - R. J. Mathar, Aug 19 2022