cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Salvatore Di Guida

Salvatore Di Guida's wiki page.

Salvatore Di Guida has authored 3 sequences.

A307452 Primes p such that the sum of the decimal digits of p^4 is also a prime.

Original entry on oeis.org

2, 5, 7, 17, 23, 41, 47, 53, 67, 73, 97, 103, 113, 151, 157, 163, 173, 179, 197, 199, 223, 227, 251, 257, 263, 281, 293, 313, 349, 353, 389, 431, 439, 449, 457, 461, 479, 499, 503, 557, 577, 587, 593, 619, 659, 673, 709, 733, 829, 853, 857, 983, 997, 1033
Offset: 1

Author

Salvatore Di Guida, Apr 09 2019

Keywords

Examples

			2^4=16, 1+6=7. 5^4=625, 6+2+5=13. 7^4=2401, 2+4+0+1=7.
		

Crossrefs

Cf. A007953 (sumdigits), A030514 (primes^4).

Programs

  • Mathematica
    Select[Prime@ Range@ 180, PrimeQ@ Total@ IntegerDigits[#^4] &] (* Michael De Vlieger, Jul 08 2019 *)
  • PARI
    isok(p) = isprime(p) && isprime(sumdigits(p^4)); \\ Michel Marcus, Apr 09 2019

A185022 Prime p such that p, p+12, p+24 are all primes.

Original entry on oeis.org

5, 7, 17, 19, 29, 47, 59, 89, 127, 139, 167, 199, 227, 239, 257, 269, 397, 409, 419, 467, 479, 607, 619, 727, 797, 929, 997, 1009, 1039, 1277, 1279, 1427, 1447, 1459, 1487, 1499, 1559, 1597, 1697, 1709, 1777, 1877, 1889, 1987, 2087, 2129, 2269, 2399, 2609
Offset: 1

Author

Salvatore Di Guida, May 19 2012

Keywords

Comments

Intersection of A046133 and A033560. - M. F. Hasler, May 19 2012

Programs

  • Mathematica
    Select[Range[50], PrimeQ[#] && PrimeQ[# + 12] && PrimeQ[# + 24] &] (* G. C. Greubel, Jun 20 2017 *)
  • PARI
    forprime(p=1,2999,isprime(p+12)&isprime(p+24)&print1(p",")) \\ M. F. Hasler, May 19 2012

A212492 Prime p such that p, p+10, p+12 are all primes.

Original entry on oeis.org

7, 19, 31, 61, 97, 127, 139, 181, 229, 271, 337, 409, 421, 607, 631, 811, 1009, 1021, 1039, 1051, 1279, 1291, 1471, 1597, 1609, 1657, 1777, 1861, 1867, 1987, 2017, 2131, 2371, 2539, 2647, 2677, 2719, 2791, 3109, 3319, 3361, 3457, 3517, 3529, 3547, 3571, 3907
Offset: 1

Author

Salvatore Di Guida, May 18 2012

Keywords

Comments

All terms are congruent to 1 (mod 6). - Zak Seidov, Oct 28 2021

Programs

  • Mathematica
    Select[Range[5000], PrimeQ[#] && PrimeQ[#+10] && PrimeQ[#+12] &] (* T. D. Noe, May 18 2012 *)
  • Python
    from sympy import isprime, primerange
    def ok(p): return isprime(p+10) and isprime(p+12)
    print(list(filter(ok, primerange(1, 3910)))) # Michael S. Branicky, Oct 28 2021