cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Wassan Letourneur

Wassan Letourneur's wiki page.

Wassan Letourneur has authored 2 sequences.

A241888 a(n) = 2^(4*n + 1) - 1.

Original entry on oeis.org

1, 31, 511, 8191, 131071, 2097151, 33554431, 536870911, 8589934591, 137438953471, 2199023255551, 35184372088831, 562949953421311, 9007199254740991, 144115188075855871, 2305843009213693951, 36893488147419103231, 590295810358705651711, 9444732965739290427391
Offset: 0

Author

Wassan Letourneur, Aug 09 2014

Keywords

Crossrefs

Programs

  • GAP
    List([0..20],n->2^(4*n+1)-1); # Muniru A Asiru, Mar 12 2019
  • Maple
    seq(coeff(series((14*x+1)/((x-1)*(16*x-1)),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Mar 12 2019
  • Mathematica
    Table[2^(4n + 1) - 1, {n, 0, 29}]
    CoefficientList[ Series[(14x + 1)/((x - 1) (16x - 1)), {x, 0, 18}], x] (* Robert G. Wilson v, Jan 28 2015 *)
    LinearRecurrence[{17,-16},{1,31},30] (* Harvey P. Dale, Mar 13 2016 *)
  • PARI
    vector(40, n, 2^(4*n-3)-1) \\ Derek Orr, Aug 11 2014
    
  • PARI
    Vec((14*x+1)/((x-1)*(16*x-1)) + O(x^100)) \\ Colin Barker, Aug 31 2014
    

Formula

a(n) = 2^(4*n + 1) - 1 = A000225(4*n + 1) = A013776(n) - 1 = 4*A000225(4*n - 1) + 3.
From Colin Barker, Aug 31 2014: (Start)
a(n) = 17*a(n-1) - 16*a(n-2).
G.f.: (14*x+1)/((x-1)*(16*x-1)). (End)
E.g.f.: exp(x)*(2*exp(15*x) - 1). - Elmo R. Oliveira, Feb 20 2025

A241955 a(n) = 2^(4*n+3) - 1.

Original entry on oeis.org

7, 127, 2047, 32767, 524287, 8388607, 134217727, 2147483647, 34359738367, 549755813887, 8796093022207, 140737488355327, 2251799813685247, 36028797018963967, 576460752303423487, 9223372036854775807, 147573952589676412927, 2361183241434822606847, 37778931862957161709567
Offset: 0

Author

Wassan Letourneur, Aug 09 2014

Keywords

Crossrefs

Programs

Formula

a(n) = 2^(4*n+3) - 1 = A000225(4*n+3) = A013777(n) - 1 = 4*A241888(n) + 3.
From Colin Barker, Aug 11 2014: (Start)
a(n) = 17*a(n-1) - 16*a(n-2).
G.f.: (8*x+7)/((x-1)*(16*x-1)). (End)
E.g.f.: exp(x)*(8*exp(15*x) - 1). - Elmo R. Oliveira, Feb 20 2025