cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A119512 Determinant of n X n matrix of first n^2 terms of A000020 number of primitive polynomials of degree n over GF(2).

Original entry on oeis.org

2, 2, 244, -80544, 2895473496576
Offset: 1

Views

Author

Jonathan Vos Post, May 27 2006

Keywords

Comments

The initial 2 should probably be a 1, see: A011260. This would change all terms to: a(2) = 0 because of the singular determinant[1,1,2,2] = 0; a(3) = 52; a(4) = -34848; a(5) = -2211008492544.

Examples

			a(2) = 2 =
|2 1|
|2 2|.
		

Crossrefs

A011260 Number of primitive polynomials of degree n over GF(2).

Original entry on oeis.org

1, 1, 2, 2, 6, 6, 18, 16, 48, 60, 176, 144, 630, 756, 1800, 2048, 7710, 7776, 27594, 24000, 84672, 120032, 356960, 276480, 1296000, 1719900, 4202496, 4741632, 18407808, 17820000, 69273666, 67108864, 211016256, 336849900, 929275200, 725594112, 3697909056
Offset: 1

Views

Author

Keywords

References

  • Elwyn R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
  • T. L. Booth, An analytical representation of signals in sequential networks, pp. 301-3240 of Proceedings of the Symposium on Mathematical Theory of Automata. New York, N.Y., 1962. Microwave Research Institute Symposia Series, Vol. XII; Polytechnic Press of Polytechnic Inst. of Brooklyn, Brooklyn, N.Y. 1963 xix+640 pp. See p. 303.
  • Pingzhi Fan and Michael Darnell, Sequence Design for Communications Applications, Wiley, NY, 1996, Table 5.1, p. 118.
  • W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes. MIT Press, Cambridge, MA, 2nd edition, 1972, p. 476.
  • M. P. Ristenblatt, Pseudo-Random Binary Coded Waveforms, pp. 274-314 of R. S. Berkowitz, editor, Modern Radar, Wiley, NY, 1965; see p. 296.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A058947 for initial terms.

Programs

  • Maple
    with(numtheory): phi(2^n-1)/n;
  • Mathematica
    Table[EulerPhi[(2^n - 1)]/n, {n, 1, 50}]
  • PARI
    a(n)=eulerphi(2^n-1)/n \\ Hauke Worpel (thebigh(AT)outgun.com), Jun 10 2008

A058943 Coefficients of irreducible polynomials over GF(2) listed in lexicographic order.

Original entry on oeis.org

10, 11, 111, 1011, 1101, 10011, 11001, 11111, 100101, 101001, 101111, 110111, 111011, 111101, 1000011, 1001001, 1010111, 1011011, 1100001, 1100111, 1101101, 1110011, 1110101, 10000011, 10001001, 10001111, 10010001
Offset: 1

Views

Author

N. J. A. Sloane, Jan 13 2001

Keywords

Comments

Church's table extends through degree 11.

Examples

			The first few are x, x+1; x^2+x+1; x^3+x+1, x^3+x^2+1; ... Note that x is irreducible but not primitive.
		

References

  • R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983, Table C, pp. 553-555.

Crossrefs

Converted to decimal: A014580.
Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): this sequence, A058944, A058948, A058945, A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.

Programs

  • Mathematica
    Do[a = Reverse[ IntegerDigits[n, 2]]; b = {0}; l = Length[a]; k = 1; While[k < l + 1, b = Append[b, a[[k]]*x^(k - 1) ]; k++ ]; b = Apply[Plus, b]; c = Factor[b, Modulus -> 2]; If[b == c, Print[ FromDigits[ IntegerDigits[n, 2]]]], {n, 3, 250, 2} ]
  • PARI
    seq(N, p=2, maxdeg=oo) = {
      my(a = List(), k=0, d=0);
      while (d++ <= maxdeg,
        for (n=p^d, 2*p^d-1, my(f=Mod(Pol(digits(n,p)),p));
          if(polisirreducible(f), listput(a, subst(lift(f),'x,10)); k++);
          if(k >= N, break(2))));
      Vec(a);
    };
    seq(27) \\ Gheorghe Coserea, May 28 2018

A058947 Coefficients of primitive irreducible polynomials over GF(2) listed in lexicographic order.

Original entry on oeis.org

11, 111, 1011, 1101, 10011, 11001, 100101, 101001, 101111, 110111, 111011, 111101, 1000011, 1011011, 1100001, 1100111, 1101101, 1110011, 10000011, 10001001, 10001111, 10010001, 10011101, 10100111, 10101011
Offset: 1

Views

Author

N. J. A. Sloane, Jan 13 2001

Keywords

Comments

Church's table extends through degree 11.

Examples

			The first few are x+1; x^2+x+1; x^3+x+1, x^3+x^2+1; ... Note that x is irreducible but not primitive.
		

Crossrefs

Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, A058945, A058946.
Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.
a(n) = A007088(A091250(n)).

Programs

  • Mathematica
    car = 2; maxDegree = 13;
    okQ[{1, 1}] = True;
    okQ[coefs_List] := Module[{P}, P = coefs.x^Range[Length[coefs]-1, 0, -1]; coefs[[1]] == 1 && IrreduciblePolynomialQ[P, Modulus -> car] && PrimitivePolynomialQ[P, car]];
    FromDigits /@ Select[Table[IntegerDigits[k, car], {k, car+1, car^(maxDegree + 1)}], okQ] (* Jean-François Alcover, Sep 09 2019 *)

A051070 a(n) is the n-th term in sequence A_n, respecting the offset, or a(n) = -1 if A_n has fewer than n terms.

Original entry on oeis.org

1, 2, 1, 0, 2, 3, 0, 7, 8, 4, 63, 1, 316, 78, 16, 2048, 7652, 26627, 8, 24000, 232919, 1145406, 3498690007594650042368, 2058537, 58, 26, 27, 59, 9272780, 3, 69273668, 4870847, 2387010102192469724605148123694256128, 1, 1, -53, 43, 0, -4696, 173, 44583, 111111111111111111111111111111111111111111, 30402457, 668803781, 1134903170, 382443020332
Offset: 1

Views

Author

Robert G. Wilson v, Aug 23 2000

Keywords

Comments

a(58) = A000058(58) = 192523...920807 (58669977298272603 digits) is too large to include in the b-file. - Pontus von Brömssen, May 19 2022
Comment from N. J. A. Sloane, Dec 26 2022 (Start)
Note that a(n) = -1 can arise in two ways: either A_n has fewer than n terms, or A_n has at least n terms, but its n-th term is -1.
Here is a summary of the terms with n <= 80.
a(n) = -1 occurs just twice, for n = 53 and 54, in both cases because the relevant New York subway lines do not have enough stops.
a(1) though a(65) are known, although a(58) = = 192523...920807 has 58669977298272603 digits.
a(66) is the first unknown value.
Also unknown for n <= 80 are a(67), a(72), a(74), a(75), a(76), and a(77) (counts of numbers <= 2^n represented by various quadratic forms; some of these do not even have b-files), and a(80), which like a(66) is a graph-theory question. (End)

Examples

			a(19) = 8 because A000019(19) = 8.
a(20) = 24000 because A000020(20) = 24000.
		

Crossrefs

See A091967, A107357, A102288 for other versions. See also A031214, A031135.

Programs

  • Maple
    for m from 1 do
      url:= sprintf("https://oeis.org/A%06d/b%06d.txt",m,m);
      S:= URL:-Get(url);
      L:= StringTools[Split](S,"\n");
      for t in L do
        g:= sscanf(t, "%d %d");
        if nops(g) = 2 and g[1] = m then
          a[m]:= g[2];
          break
        fi;
      od;
      if not assigned(a[m]) then break fi;
    od:
    seq(a[i],i=1..m-1); # Robert Israel, May 31 2015

Extensions

Rechecked and 4 more terms added by N. J. A. Sloane, May 25 2005
a(36) and a(42) corrected and a(43) to a(46) added by Robert Israel, May 31 2015
Definition revised by N. J. A. Sloane, Nov 27 2016

A056743 a(n) = phi(2^prime(n) - 1)/prime(n); a(0) = 0 by convention.

Original entry on oeis.org

0, 1, 2, 6, 18, 176, 630, 7710, 27594, 356960, 18407808, 69273666, 3697909056, 53630700752, 204064589160, 2992477516800, 169917983040000, 9770466930024800, 37800705069076950, 2202596295934991760
Offset: 0

Views

Author

Robert G. Wilson v, Aug 14 2000

Keywords

Crossrefs

Programs

  • Maple
    with numtheory; A056743 := proc(n) phi( 2^ithprime(n) - 1 )/ithprime(n); end;
  • Mathematica
    Phi( A001348) / A000040. Table[EulerPhi[(2^Prime[n] - 1)]/Prime[n], {n, 1, 25}]

A103176 Let p = prime(sigma(n)) and q = prime(phi(n)), then p is in the sequence if p-q = 6.

Original entry on oeis.org

13, 19, 43, 113, 463, 619, 863, 1789, 2273, 2383, 4519, 4789, 4937, 5443, 5507, 5653, 8237, 10459, 13007, 13697, 16063, 16453, 17389, 18313, 18919, 20903, 21193, 21319, 21383, 23567, 24109, 25309, 26267, 27947, 28283, 29573, 30559, 31183, 31517
Offset: 1

Views

Author

Labos Elemer, Mar 02 2005

Keywords

Comments

Conjecture: In all cases sigma(n)-phi(n)=2, i.e., n is prime.
Proof: Suppose n is composite. Then sigma(n) > n + sqrt(n) and phi(n) <= n - sqrt(n) and so prime(sigma(n)) - prime(phi(n)) >= sigma(n) - phi(n) > 2*sqrt(n) > 6 for n > 9. - Charles R Greathouse IV, May 15 2013

Examples

			n=3719, sigma(n)=3720, phi(n)=3718, a(n)=p(sigma(n))=34847.
		

Crossrefs

Programs

  • Mathematica
    Do[g=n;a=Prime[u=DivisorSigma[1,n]]; b=Prime[w=EulerPhi[n]];s=a-b; If[Equal[s,6],Print[{n,a,b,u,w,u-w}]; ta=Append[ta,a]],{n,1,10000}] ta=Delete[ta,1]
    Prime[DivisorSigma[1,#]]&/@Select[Range[5000],Prime[DivisorSigma[ 1,#]] == Prime[ EulerPhi[#]]+6&] (* Harvey P. Dale, Sep 22 2016 *)
  • PARI
    p=2;q=3;forprime(r=5,1e6,if(r-p==6 && isprime(primepi(q)), print1(r", "));p=q;q=r) \\ Charles R Greathouse IV, May 15 2013

Extensions

a(1) corrected by Charles R Greathouse IV, May 15 2013

A139330 A-numbers of sequences in the OEIS not beginning with a 1.

Original entry on oeis.org

4, 14, 20, 22, 28, 30, 32, 33, 35, 36, 37, 38, 40, 43, 45, 49, 51, 52, 54, 57, 58, 65, 66, 71, 73, 75, 76, 78, 81, 87, 93, 94, 96, 100, 101, 102, 103, 107, 114, 120, 129, 130, 131, 133, 134, 139, 147, 150, 153, 155, 159, 163, 167, 173, 176, 181, 183, 184, 185
Offset: 1

Views

Author

Leonardo Sznajder, Jun 05 2008

Keywords

Examples

			a(3)=20 because the third sequence not begining with a "1" is A000020.
		

A337442 Number of output sequences from the linear feedback shift register whose feedback polynomial coefficients (excluding the constant term) correspond to the binary representation of n.

Original entry on oeis.org

1, 2, 3, 2, 4, 2, 2, 4, 6, 2, 4, 4, 2, 6, 4, 4, 8, 4, 2, 6, 2, 4, 8, 2, 4, 8, 4, 2, 6, 2, 2, 8, 14, 2, 6, 4, 8, 8, 4, 6, 6, 8, 12, 4, 4, 2, 8, 6, 2, 12, 8, 2, 8, 8, 2, 4, 4, 2, 4, 12, 6, 4, 6, 10, 20, 2, 4, 8, 2, 12, 6, 2, 2, 6, 4, 8, 16, 8, 2, 8, 4, 4, 16, 2
Offset: 0

Views

Author

Michael Schwartz, Aug 27 2020

Keywords

Comments

a(n) > 1 for n > 0.
It appears that every term after a(2) is even.
It appears that a(2^n) is greater than each preceding term and is greater than or equal to each term up to a(2^(n+1)).
If a(n) = 2, then the nonzero shift register sequence is an m-sequence.

Examples

			For n = 3 = 11 in binary, the polynomial is 1+x+x^2 and the 2 shift register sequences are {00..., 01101...}.
For n = 4 = 100 in binary, the polynomial is 1+x^3 and the 4 shift register sequences are {000..., 001001..., 011011..., 111...}.
For n = 6 = 110 in binary, the polynomial is 1+x^2+x^3 and the 2 shift register sequences are {000..., 0010111001...}.
For n = 10 = 1010 in binary, the polynomial is 1+x^2+x^4 and the 4 shift register sequences are {0000..., 0001010001..., 0011110011..., 0110110...}.
For n = 11 = 1011 in binary, the polynomial in 1+x+x^2+x^4. Using a Fibonacci LSFR, if the current state of the register is 0001, the next input bit is 0+0+1=1, and the next state is 0011. If the current state is 0100, the next input bit is 0+0+0=0, and the next state is 1000. The 4 shift register sequences are {0000..., 00011010001..., 00101110010..., 1111...}.
		

Crossrefs

a(2^n) = A000031(n+1).
A011260 counts how many 2's are in the interval [2^(n-1),(2^n)-1].
a(n) = 2 if and only if 2n+1 is in A091250.
Cf. A100447, A001037, A000016, A000013 (definition 2), A000020, A058947.
Cf. A011655..A011751 for examples of binary m-sequences.
Showing 1-9 of 9 results.